精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆的离心率为,其左焦点到椭圆上点的最远距离为3,点为椭圆外一点,不过原点O的直线lC相交于A,B两点,且线段AB被直线OP平分

(1)求椭圆C的标准方程

(2)求面积最大值时的直线l的方程.

【答案】(1) (2) y

【解析】

(1)由已知可得,解方程组即可求出椭圆的标准方程.

(2)将代入椭圆方程,利用点差法求出,设出,代入椭圆方程,利用弦长公式,点到直线的距离以及三角形面积公式,求出面积,再利用导数思想求出面积最大值时的值,即可求出直线方程.

(1)由题:

左焦点到椭圆上点的最远距离为

即:,可解得:.

∴所求椭圆的方程为:.

(2)易得直线的方程:,设

的中点.其中.

在椭圆上,

整理得:

因为,代入求得:.

设直线的方程为

代入椭圆:.

,可得:,且.

由上又有:

.

∵点到直线的距离为:

.

.

整理得:

时,取得最大值,

此时直线的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的偶函数,对任意都有,当,且时,,给出如下命题:

②直线是函数的图象的一条对称轴;

③函数上为增函数;

④函数上有四个零点.

其中所有正确命题的序号为( )

A. ①② B. ②④ C. ①②③ D. ①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,等腰梯形ABCD中,OBE中点,FBC中点.将沿BE折起到的位置,如图2.

1)证明:平面

2)若平面平面BCDE,求点F到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,倾斜角为的直线的参数方程为为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,且,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱底面三角形的周长为6,侧棱长长为3.

(1)求正三棱柱的体积;

(2)求异面直线AB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20141月至201612月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是(

A.月接待游客量逐月增加

B.年接待游客量逐年增加

C.各年的月接待游客量高峰期大致在78

D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:对任意均有p为常数,),若,则的所有可能取值的集合是___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义方程的实数根叫做函数的“新驻点”,若函数的“新驻点”分别为,则的大小关系为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是公差不为0的等差数列, 是等比数列,且

(1)求数列的通项公式;

(2)设,求数列的前n项的和

查看答案和解析>>

同步练习册答案