精英家教网 > 高中数学 > 题目详情
12.方程$\frac{{x}^{2}}{sinθ-3}$+$\frac{{y}^{2}}{2sinθ+3}$=1所表示的图形是焦点在y轴上的双曲线.

分析 利用正弦函数的范围,即可得出结论.

解答 解:∵-1≤sinθ≤1,
∴1≤2sinθ+3≤5,-4≤sinθ-3≤-2,
∴方程$\frac{{x}^{2}}{sinθ-3}$+$\frac{{y}^{2}}{2sinθ+3}$=1所表示的图形是焦点在y轴上的双曲线,
故答案为:焦点在y轴上的双曲线.

点评 本题考查曲线与方程,考查正弦函数的范围,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.给出下列四个命题:
①命题“若α=β,则cosα=cosβ”的逆否命题;
②“?x0∈R,使得x02-x0>0”的否定是:“?x∈R,均有x2-x<0”;
③命题“x2=4”是“x=-2”的充分不必要条件;
④p:a∈{a,b,c},q:{a}⊆{a,b,c},p且q为真命题.
其中真命题的序号是①④.(填写所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在等比数列{an}中,a2=18,a4=8,则a1=27或-27,q=$\frac{2}{3}$或-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知A(1,2,3)、B(2,1,2)、C(1,1,2),O为坐标原点,点D在直线OC上运动,则当$\overrightarrow{DA}$•$\overrightarrow{DB}$取最小值时,点D的坐标为(  )
A.($\frac{4}{3}$,$\frac{4}{3}$,$\frac{4}{3}$)B.($\frac{8}{3}$,$\frac{4}{3}$,$\frac{8}{3}$)C.($\frac{4}{3}$,$\frac{4}{3}$,$\frac{8}{3}$)D.($\frac{8}{3}$,$\frac{8}{3}$,$\frac{4}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正方体ABCD-A′B′C′D′的棱长为a,点P是平面AA′D′D的中心,Q为B′D′上一点,且PQ∥平面AA′B′B,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\frac{1}{3x-1}$,求f(-2),f(0),f($\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若以椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴端点B(0,1)为直角顶点作椭圆内接等腰直角三角形,问这样的三角形能不能做?若能做,可做多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=$\frac{1}{2}$(cosx-sinx)(cosx+sinx)-2asinx+b(a>0).
(1)若b=1,且对任意x∈(0,$\frac{π}{6}$),恒有f(x)>0,求a的取值范围.
(2)若f(x)的最大值为1,最小值为-4,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若${(x-\frac{3}{x})}^{2n}$展开式的系数和为256,则其展开式的常数项为5670.

查看答案和解析>>

同步练习册答案