精英家教网 > 高中数学 > 题目详情

(15分)已知以点C (t, )(t∈R , t ≠ 0)为圆心的圆与轴交于点O、A,与y轴交于点O、B,其中O为原点.(1)求证:△OAB的面积为定值;(2)设直线y = –2x+4与圆C交于点M, N,若OM = ON,求t的值并求出圆C的方程.

(1)

 设圆的方程是 

  令,得;令,得

   ,即:的面积为定值.------6分

  (2)垂直平分线段

  直线的方程是

  ,解得:    -----------------9分

   当时,圆心的坐标为,  

  此时到直线的距离

与直线相交于两点。------------------12分.

时,圆心的坐标为

此时到直线的距离

与直线不相交,

不符合题意舍去.    ------------------14分

的方程为.------------15分

练习册系列答案
相关习题

科目:高中数学 来源:江西省新余一中2011-2012学年高二下学期第一次段考数学理科试题 题型:044

已知以点C(t)(tR),t≠0)为圆心的圆与x轴交于点OA,与y轴交于点OB,其中O为坐标原点.

(1)求证:△OAB的面积为定值;

(2)设直线y=-2x+4与圆C交于点MN若|OM|=|ON|,求圆C的方程.

(3)若t>0,当圆C的半径最小时,圆C上至少有三个不同的点到直线ly=k(x-3-)的距离为,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西省高二上学期10月月考数学试卷(解析版) 题型:解答题

已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.

(1)求证:△AOB的面积为定值;

(2)设直线2x+y-4=0与圆C交于点M、N,若OM=ON,求圆C的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二下学期第一次段考理科数学试卷 题型:解答题

已知以点C (t, )(tR),t≠0)为圆心的圆与x轴交于点OA,与y轴交于点OB,其中O为坐标原点.

(1)求证:△OAB的面积为定值;

(2)设直线y= –2x+4与圆C交于点MN若|OM|=|ON|,求圆C的方程.

(3)若t>0,当圆C的半径最小时,圆C上至少有三个不同的点到直线ly的距离为,求直线l的斜率k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010年湖北省高一下学期期末考试数学试卷 题型:解答题

(本小题12分)已知: 以点C (t, )(tR , t 0)为圆心的圆与轴交于点O, A, 与y轴交于点O, B, 其中O为原点.

(1)求证:△OAB的面积为定值;

(2)设直线y = –2x+4与圆C交于点M, N, 若OM = ON, 求圆C的方程.

 

查看答案和解析>>

同步练习册答案