精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x-1)2,数列{an}是公差为d的等差数列,{bn}是公比为q(q∈R,q≠1)的等比数列.若a1=f(d-1),a3=f(d+1),b1=f(q-1),b3=f(q+1).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设数列{cn}对任意自然数n均有
c1
b1
+
c2
2b2
+
c3
3b3
+…+
cn
nbn
=an+1
,求c1+c3+c5+…+c2n-1的值.
分析:(Ⅰ)由于数列{an}是公差为d的等差数列,可由a3-a1=2d,∴f(d+1)-f(d-1)=2d.
即 d2-(d-2)2=2d,解得 d的值,从而写出{an}的通项公式;同理
b3
b1
=q2
,解得q的值,从而写出{bn}的通项公式.
(Ⅱ) 由题设知 
c1
b1
=a2
,∴c1=a2b1=2.
当n≥2时,
c1
b1
+
c2
2b2
+
c3
3b3
+…+
cn-1
(n-1)bn-1
+
cn
nbn
=an+1

c1
b1
+
c2
2b2
+
c3
3b3
+…+
cn-1
(n-1)bn-1
=an

两式相减,得
cn
nbn
=an+1-an=2

∴cn=2nbn=2n•3n-1(c1=b1a2=2适合).
再利用错位相消法计算化简得出c1+c3+c5+…+c2n-1的值
解答:解:(Ⅰ)由于数列{an}是公差为d的等差数列,
∴a3-a1=2d,∴f(d+1)-f(d-1)=2d;即 d2-(d-2)2=2d,解得 d=2.
∴a1=f(2-1)=0,an=2(n-1);
由于{bn}是公比为q(q∈R,q≠1)的等比数列
b3
b1
=q2
,∴
f(q+1)
f(q-1)
=q2=
q2
(q-2)2

∵q≠0,q≠1,∴q=3.
又b1=f(q-1)=1,∴bn=3n-1
(Ⅱ) 由题设知 
c1
b1
=a2
,∴c1=a2b1=2;
当n≥2时,
c1
b1
+
c2
2b2
+
c3
3b3
+…+
cn-1
(n-1)bn-1
+
cn
nbn
=an+1

c1
b1
+
c2
2b2
+
c3
3b3
+…+
cn-1
(n-1)bn-1
=an

两式相减,得
cn
nbn
=an+1-an=2

∴cn=2nbn=2n•3n-1(c1=b1a2=2适合).
设T=c1+c3+c5+…+c2n-1
∴T=2+6×32+10×34+…+(4n-2)•32n-232T
=2×32+6×34+10×36+…+(4n-6)•32n-2+(4n-2)•32n
两式相减,得-8T=2+4×32+4×34+…+4×32n-2-(4n-2)•32n
=2+4×
9(9n-1-1)
9-1
-(4n-2)•9n

=2+
1
2
×9n-
9
2
-(4n-2)×9n

=-
5
2
+
5
2
×9n-4n•9n

T=
5
16
+(
n
2
-
5
16
)•32n
点评:本题考查等差数列、等比数列通项公式、错位相消法求和.考查构造转化、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案