精英家教网 > 高中数学 > 题目详情

已知函数的极大值为正数,极小值为负数,则的取值范围是            

 

【答案】

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的导函数f'(x)是二次函数,且f'(x)=0的两根为±1.若f(x)的极大值与极小值之和为0,f(-2)=2.
(1)求函数f(x)的解析式;
(2)若函数在开区间(m-9,9-m)上存在最大值与最小值,求实数m的取值范围.
(3)设函数f(x)=x•g(x),正实数a,b,c满足ag(b)=bg(c)=cg(a)>0,证明:a=b=c.

查看答案和解析>>

科目:高中数学 来源:2012年江苏省南通市教研室高考数学全真模拟试卷(一)(解析版) 题型:解答题

已知函数f(x)的导函数f'(x)是二次函数,且f'(x)=0的两根为±1.若f(x)的极大值与极小值之和为0,f(-2)=2.
(1)求函数f(x)的解析式;
(2)若函数在开区间(m-9,9-m)上存在最大值与最小值,求实数m的取值范围.
(3)设函数f(x)=x•g(x),正实数a,b,c满足ag(b)=bg(c)=cg(a)>0,证明:a=b=c.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题理科数学试卷(解析版) 题型:解答题

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

科目:高中数学 来源:2013届山西省晋商四校高二下学期文科数学试卷(解析版) 题型:解答题

已知,函数

(1)当时,求函数在点(1,)的切线方程;

(2)求函数在[-1,1]的极值;

(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。

【解析】本试题中导数在研究函数中的运用。(1)中,那么当时,  又    所以函数在点(1,)的切线方程为;(2)中令   有 

对a分类讨论,和得到极值。(3)中,设,依题意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  当时,  又    

∴  函数在点(1,)的切线方程为 --------4分

(Ⅱ)令   有 

①         当

(-1,0)

0

(0,

,1)

+

0

0

+

极大值

极小值

的极大值是,极小值是

②         当时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。 

综上所述   时,极大值为,无极小值

时  极大值是,极小值是        ----------8分

(Ⅲ)设

求导,得

    

在区间上为增函数,则

依题意,只需,即 

解得  (舍去)

则正实数的取值范围是(

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高二上学期数学单元测试4 题型:解答题

 

 
    (理)如图,在正三棱柱(底面为正三角形,侧棱与底面垂直)ABCA1B1C1中,MN

分别为A1B1BC的中点.

   (I)试求的值,使

   (II)设AC1的中点为P,在(I)的条件下,求证:NP⊥平面AC1M.

 

 

 

(文)已知函数的极大值

为7;当x=3时,fx)有极小值.

(I)求函数fx)的解析式;

(II)求函数fx)在点P(1,f(1))处的切线方程.

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案