【题目】某工厂某种产品的年固定成本为250万元,每生产万件,需另投入成本为,当年产量不足80万件时,(万元).当年产量不小于80万件时,(万元).每件商品售价为50元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(万件)的函数解析式;
(2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大?
科目:高中数学 来源: 题型:
【题目】已知函数,其中为常数,且.
(1)若,求函数的表达式;
(2)在(1)的条件下,设函数,若在区间[-2,2]上是单调函数,求实数的取值范围;
(3)是否存在实数使得函数在[-1,4]上的最大值是4?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国的钨矿资源储量丰富,在全球已经探明的钨矿产资源储量中占比近,居全球首位。中国又属赣州钨矿资源最为丰富,其素有“世界钨都”之称。某科研单位在研发的钨合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值与这种新合金材料的含量x(单位:克)的关系为:当时, 是的二次函数;当时, .测得部分数据如表.
x(单位:克) | 0 | 1 | 2 | 9 | … |
y | 0 | 3 | … |
(1)求y关于x的函数关系式y=
(2)求函数的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
① 函数与函数表示同一个函数.
② 奇函数的图象一定过直角坐标系的坐标原点.
③ 函数的图象可由的图象向左平移个单位长度得到.
④ 若函数的定义域为,则函数的定义域为.
其中正确命题的序号是_________ (填上所有正确命题的序号) .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以坐标原点为圆心的圆与抛物线相交于不同的两点, ,与抛物线的准线相交于不同的两点, ,且.
(1)求抛物线的方程;
(2)若不经过坐标原点的直线与抛物线相交于不同的两点, ,且满足.证明直线过定点,并求出点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )
A. 消耗1升汽油,乙车最多可行驶5千米
B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中非毕业班学生人数分布情况如下表,为了了解这2000个学生的体重情况,从中随机抽取160个学生并测量其体重数据,根据测量数据制作了下图所示的频率分布直方图.
(1)为了使抽取的160个样品更具代表性,宜采取分层抽样,请你给出一个你认为合适的分层抽样方案,并确定每层应抽取的样品个数;
(2)根据频率分布直方图,求的值,并估计全体非毕业班学生中体重在内的人数;
(3)已知高一全体学生的平均体重为,高二全体学生的平均体重为,试估计全体非毕业班学生的平均体重.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com