精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若方程内有两个不等实根,求的取值范围(其中为自然对数的底);

2)令,如果图象与轴交于中点为,求证:.

【答案】1 2)证明见解析

【解析】

1)设,求,令,得到函数的单调区间,得出的图像的大致走向,得出满足题意的不等式组,解得实数的取值范围.
(2),得,将坐标代入,再两式相减得.然后假设,代入消去参数,利用进行换元再构造函数,利用的单调性可得到与假设相矛盾的结论,从而证明结论.

(1),则

.

所以单调递增,在上单调递减.

所以单调递增,在上单调递减.

,,

方程内有两个不等实根

所以 解得: .

所以的取值范围是

2)由的中点有.

由点的图像上有.

两式相减的

,所以

,则

假设成立

成立.

,即

所以,即

,则

所以上单调递增,所以.

,即恒成立.

设与假设相矛盾.

故假设不成立.

成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设命题p:函数fx=lgax2-x+16a)的定义域为R;命题q:不等式3x-9xa对任意xR恒成立.

(1)如果p是真命题,求实数a的取值范围;

(2)如果命题pq为真命题且pq为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取件产品作为样本称出它们的质量(单位:毫克),质量值落在的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.

产品质量/毫克

频数

(Ⅰ)以样本的频率作为概率,试估计从甲流水线上任取件产品,求其中不合格品的件数的数学期望.

甲流水线

乙流水线

总计

合格品

不合格品

总计

(Ⅱ)由以上统计数据完成下面列联表,能否在犯错误的概率不超过的前提下认为产品的包装合格与两条自动包装流水线的选择有关?

(Ⅲ)由乙流水线的频率分布直方图可以认为乙流水线生产的产品质量服从正态分布,求质量落在上的概率.

参考公式:

参考数据:

参考公式:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥(如图1)的平面展开图(如图2)中,四边形为边长为的正方形,△ABE和△BCF均为正三角形,在三棱锥中:

(I)证明:平面 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)若点在棱上,满足 ,点在棱上,且的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z满足|z|z的实部大于0z2的虚部为2.

1)求复数z

2)设复数zz2zz2之在复平面上对应的点分别为ABC,求(的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10名选手参加某项诗词比赛,计分规则如下:比赛共有6道题,对于每一道题,10名选手都必须作答,若恰有个人答错,则答对的选手该题每人得分,答错选手该题不得分.比赛结束后,关于选手得分情况有如下结论:

①若选手甲答对6道题,选手乙答对5道题,则甲比乙至少多得1分:

②若选手甲和选手乙都答对5道题,则甲和乙得分相同;

③若选手甲的总分比其他选手都高,则甲最高可得54

其中正确结论的个数是(

A.0B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(lnxax)有两个极值点,则实数a的取值范围是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线与y轴垂直.

1)若,求的单调区间;

2)若成立,求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

同步练习册答案