精英家教网 > 高中数学 > 题目详情
11.已知定义在R上的函数f(x),其值域也是R,并且对任意x,y∈R,都有f(xf(y))=xy,则|f(2007)|等于(  )
A.0B.1C.20072D.2007

分析 根据抽象函数关系,利用赋值法进行构造求解即可.

解答 解:令y=1,有f(xf(1))=x,显然,f(1)不能为0.
令t=f(1)x,则x=$\frac{t}{f(1)}$,
则方程等价为f(t)=$\frac{t}{f(1)}$,令t=1,
则有f(1)=$\frac{1}{f(1)}$,
即f(1)=±1,
则 f(t)=±t,令t=2007,得▏f(2007)▏=2007.
故选:D

点评 本题主要考查函数值的计算,根据抽象函数的关系,利用赋值法是解决本题的关键.有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知某中学食堂每天供应3000名学生用餐,为了改善学生伙食,学校每星期一有A、B两种菜可供大家免费选择(每人都会选而且只能选一种菜).调查资料表明,凡是在这星期一选A种菜的,下星期一会有20%改选B种菜;而选B种菜的,下星期一会有40%改选A种菜.用an,bn分别表示在第n个星期一选A的人数和选B的人数,如果a1=2000.
(1)请用an、bn表示an+1与bn+1
(2)证明:数列{an-2000}是常数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0]和[1,+∞)上是减函数,且f′($\frac{1}{2}$)=$\frac{3}{2}$
(1)求函数f(x)的解析式;
(2)若在区间[0,m](m>0)上恒有f(x)≤x,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图,则该几何体的体积为(  )
A.80B.90C.100D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2π{R}^{3}}{3}$B.$\frac{4π{R}^{3}}{3}$C.πR3D.$\frac{π{R}^{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点A($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),将OA绕坐标原点O逆时针旋转$\frac{π}{2}$至OB,则点B的坐标为(  )
A.(-$\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$)B.($\frac{1}{2}$,-$\frac{{\sqrt{3}}}{2}$)C.(-$\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$)D.($\frac{{\sqrt{3}}}{2}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$=($\frac{1}{sinx}$,$\frac{-1}{sinx}$),$\overrightarrow{b}$=(2,cos2x-sin2x).
(1)试判断$\overrightarrow{a}$与$\overrightarrow{b}$能否平行?请说明理由.
(2)若x∈(0,$\frac{π}{3}$],求函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC三个顶点坐标分别为:A(1,0),B(1,4),C(3,2),直线l经过点(0,4).
(1)求△ABC外接圆⊙M的方程;
(2)若直线l与⊙M相交于P,Q两点,且|PQ|=2$\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某建筑物是由一个半球和一个圆柱组成,半球的体积是圆柱体积的$\frac{1}{4}$,其三视图如图所示,现需要在该建筑物表面涂一层防晒涂料,若每π个平方单位所需涂料费用为100元,则共需涂料费用(  )
A.6600元B.7500元C.8400元D.9000元

查看答案和解析>>

同步练习册答案