精英家教网 > 高中数学 > 题目详情
用反证法证明“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数解,那么a、b、c中至少有一个偶数”时,下列假设正确的是(  )
A、假设a、b、c都是偶数
B、假设a、b、c都不是偶数
C、假设a、b、c至少有一个奇数
D、假设a、b、c至多有一个偶数
考点:反证法与放缩法
专题:证明题,反证法
分析:本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.根据反证法的步骤,假设是对原命题结论的否定,故只须对“b、c中至少有一个偶数”写出否定即可.
解答: 解:根据反证法的步骤,假设是对原命题结论的否定“至少有一个”的否定“都不是”.
即假设正确的是:假设a、b、c都不是偶数
故选:B.
点评:一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知非空数集A、B、C,若A={y|y=x2,x∈B},B={y|y=
x
,x∈C},C={y|y=x3,x∈A},则(  )
A、A=B=C
B、A=B≠C
C、A=C≠B
D、B=C≠A

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sin(ωx+
π
3
)(ω>0)的最小正周期是π.
(1)求f(
12
)的值;
(2)若f(x0)=
3
,且x0∈(
π
12
π
3
),求sin2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的通项公式为an=-2n+5.证明:{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

 
{0}.(用适当的符号填空).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 a,b∈R,矩阵A=
-1a
b3
所对应的变换 TA将直线 x-y-1=0变换为自身,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线a∥平面α,直线b⊥直线a,则直线b与平面α的位置关系是(  )
A、b∥αB、b?α
C、b与α相交D、以上均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,B(5,0),C(-5,0),点A满足sinB-sinC=
1
2
sinA,试确定点A的轨迹及其方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点A(-1,4)的圆的圆心为C(3,1).
(1)求圆C的方程;
(2)若过点B(2,1)的直线l被圆C截得的弦长为4
5
,求直线l的方程.

查看答案和解析>>

同步练习册答案