【题目】已知抛物线:的焦点为,点在抛物线上,为坐标原点,,且.
(1)求抛物线的方程;
(2)过焦点,且斜率为1的直线与抛物线交于,两点,线段的垂直平分线交抛物线于,两点,求四边形的面积.
科目:高中数学 来源: 题型:
【题目】已知四棱锥P-ABCD,底面ABCD是,边长为的菱形,又底面(即与底面内的任意一条直线垂直),且,点分别是棱的中点.
(1)求异面直线与所成角的余弦值
(2)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数x满足x2﹣4ax+3a2<0(a>0),命题q:实数x满足x2﹣5x+6<0.
(1)若a=1,且p∧q为真命题,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),等腰梯形,,,,、分别是的两个三等分点.若把等腰梯形沿虚线、折起,使得点和点重合,记为点,如图(2).
(Ⅰ)求证:平面平面;
(Ⅱ)求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知左、右焦点分别为的椭圆过点,且椭圆C关于直线x=c对称的图形过坐标原点.
(I)求椭圆C的离心率和标准方程。
(II)圆与椭圆C交于A,B两点,R为线段AB上任一点,直线交椭圆C于P,Q两点,若AB为圆的直径,且直线的斜率大于1,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将4名志愿者分别安排到火车站、轮渡码头、机场工作,要求每一个地方至少安排一名志愿者,其中甲、乙两名志愿者不安排在同一个地方工作,则不同的安排方法共有
A. 24种B. 30种C. 32种D. 36种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是( )
A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com