精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为,点在抛物线上,为坐标原点,,且.

(1)求抛物线的方程;

(2)过焦点,且斜率为1的直线与抛物线交于两点,线段的垂直平分线交抛物线两点,求四边形的面积.

【答案】(1)(2)

【解析】

(1)先由题,将抛物线求得,再根据,且求得p的值,得出抛物线方程.

2)先将直线的方程与抛物线联立,求得中点,再求出的方程联立抛物线求得,最后求得面积即可.

解:(1)将代入抛物线的方程,得,所以

因为,所以,整理得

解得

时,,满足;当时,

所以抛物线的方程为.

(2)因为的方程为,代入,得.

,则,故的中点为.

又因为的斜率为-1,所以的方程为.

将上式代入,并整理得.

,则

.

所以四边形的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

若函数处的切线与直线垂直,求实数a的值;

讨论函数的单调区间与极值;

若函数有两个零点,求满足条件的最小整数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P-ABCD,底面ABCD,边长为的菱形,又底面(与底面内的任意一条直线垂直),且,点分别是棱的中点.

1)求异面直线所成角的余弦值

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x24ax+3a20a0),命题q:实数x满足x25x+60

1)若a1,且pq为真命题,求实数x的取值范围;

2)若pq的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),等腰梯形分别是的两个三等分点.若把等腰梯形沿虚线折起,使得点和点重合,记为点,如图(2).

(Ⅰ)求证:平面平面

(Ⅱ)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知左、右焦点分别为的椭圆过点,且椭圆C关于直线x=c对称的图形过坐标原点.

(I)求椭圆C的离心率和标准方程。

(II)圆与椭圆C交于A,B两点,R为线段AB上任一点,直线交椭圆C于P,Q两点,若AB为圆的直径,且直线的斜率大于1,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将4名志愿者分别安排到火车站、轮渡码头、机场工作,要求每一个地方至少安排一名志愿者,其中甲、乙两名志愿者不安排在同一个地方工作,则不同的安排方法共有

A. 24种B. 30种C. 32种D. 36种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是( )

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

同步练习册答案