精英家教网 > 高中数学 > 题目详情
函数y=x3的图象在原点处的切线方程为(  )
A、y=xB、x=0
C、y=0D、不存在
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用,直线与圆
分析:求出函数的导数,求得切线斜率,由点斜式方程即可得到切线方程.
解答: 解:函数y=x3的导数为y′=3x2
在原点处的切线斜率为0,
则在原点处的切线方程为y-0=0(x-0),
即为y=0.
故选:C.
点评:本题考查导数的运用:求切线方程,考查运算能力,运用点斜式方程是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

观察下列表格:我们可以发现(用a,b,c表示三个数,且a<b<c):
3,4,532+42=52
5,12,1352+122=132
7,24,2572+242=252
9,40,4192+402=412
21,b,c212+b2=c2
(1)a2+b2
 
c2
(2)最小值a是一个
 
数(填“奇”或“偶”),其余两个数b,c是
 
的两个正整数
(3)最小奇数的平方等于另外两个整数的
 

(4)x是大于1的奇数,将x2拆分成两个连续整数y,y+1的和,试证明:x,y,y+1是一组勾股数
(5)求出表格中的b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn=-5n2+20n,求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若|
a
|=2,|
b
|=1,且
a
b
的夹角为60°,则当|
a
-x
b
|取得最小值时,实数x的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列条件,写出数列的前四项,并归纳出通项公式.
(1)a1=0,an+1=an+2n-1(n∈N*
(2)a1=1,an+1=an+
an
n+1

(3)a1=2,a2=3,an+2=3an+1-2an(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2-4x+3,x≤0
-x2-2x+3,x>0
,不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是(  )
A、(-∞,-2)
B、(-∞,0)
C、(0,2)
D、(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

若某射手击中靶的概率为0.8,连续射击6次中,击中靶的次数为ξ,E(ξ)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
是夹角为60°的单位向量,则向量
a
与向量
a
+
b
的夹角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(x+
π
6

(1)求f(2015π)的值;
(2)判断并证明函数f(x)的奇偶性;
(3)设α为第四象限的角,且
sin3α
sinα
=
1
3
,求f(α+
π
3
)的值.

查看答案和解析>>

同步练习册答案