精英家教网 > 高中数学 > 题目详情
(2011•花都区模拟)已知函数f(x)=x2+alnx.
(1)当a=-2时,求函数f(x)的单调区间和极值;
(2)若g(x)=f(x)+
2x
在[1,+∞)上是单调函数,求实数a的取值范围.
分析:(1)求出函数f(x)的导数,得到导数在x=1时为零.然后列表讨论函数在区间(0,1)和(1,+∞)上讨论函数的单调性,即可得到函数f(x)的单调区间和极值;
(2)g(x)=f(x)+
2
x
在[1,+∞)上是单调函数,说明g(x)的导数g'(x)在区间[1,+∞)恒大于等于0,或g'(x)在区间[1,+∞)恒小于等于0.然后分两种情况加以讨论,最后综合可得实数a的取值范围.
解答:解:(1)易知,函数f(x)的定义域为(0,+∞).…(1分)
当a=-2时,f′(x)=2x-
2
x
=
2(x+1)(x-1)
x
.…(2分)
当x变化时,f'(x)和f(x)的值的变化情况如下表:…(4分)
x (0,1) 1 (1,+∞)
f'(x) - 0 +
f(x) 递减 极小值 递增
由上表可知,函数f(x)的单调递减区间是(0,1),单调递增区间是(1,+∞),极小值是f(1)=1.…(8分)
(2)由g(x)=x2+alnx+
2
x
,得g′(x)=2x+
a
x
-
2
x2
.…(9分)
又函数g(x)=x2+alnx+
2
x
为[1,+∞)上单调函数,
①若函数g(x)为[1,+∞)上的单调增函数,
则g'(x)≥0在[1,+∞)上恒成立,
即不等式2x-
2
x2
+
a
x
≥0
在[1,+∞)上恒成立.
也即a≥
2
x
-2x2
在[1,+∞)上恒成立,
而φ(x)=
2
x
-2x2
在[1,+∞)上的最大值为φ(1)=0,所以a≥0.…(12分)
②若函数g(x)为[1,+∞)上的单调减函数,
根据①,在[1,+∞)上φ(x)max=φ(1)=0,φ(x)没有最小值.…(13分)
所以g'(x)≤0在[1,+∞)上是不可能恒成立的.…(15分)
综上,a的取值范围为[0,+∞).…(16分)
点评:本题是一道导数的应用题,着重考查利用导数研究函数的单调性与极值,函数恒成立等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•花都区模拟)如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为2,那么 这个几何体的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•花都区模拟)某流感病研究中心对温差与甲型H1N1病毒感染数之间的相关关系进行研究,他们每天将实验室放入数量相同的甲型H1N1病毒和100头猪,然后分别记录了4月1日至4月5日每天昼夜温差与实验室里100头猪的感染数,得到如下资料:
日  期 4月1日 4月2日 4月3日 4月4日 4月5日
温  差 10 13 11 12 7
感染数 23 32 24 29 17
(1)求这5天的平均感染数;
(2)从4月1日至4月5日中任取2天,记感染数分别为x,y用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求|x-y|≥9的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•花都区模拟)若直线l:ax+by+1=0始终平分圆M:x2+y2+4x+2y+1=0的周长,则(a-2)2+(b-2)2的最小值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•花都区模拟)等差数列{an} 中,a1=3,前n项和为Sn,等比数列 {bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=
S2
b2

(1)求an与bn
(2)求数列{
1
Sn
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•花都区模拟)函数y=sin(
1
2
ωx+
π
6
),(ω>0)的最小正周期是4π,则ω=(  )

查看答案和解析>>

同步练习册答案