精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\frac{(x+2)(x-t)}{{x}^{2}}$为偶函数.
(1)求实数t值;
(2)记集合E={y|y=f(x),x∈{1,2,3}},λ=lg22+lg2lg5+lg5-1,判断λ与E的关系;
(3)当x∈[a,b](a>0,b>0)时,若函数f(x)的值域为[2-$\frac{5}{a}$,2-$\frac{5}{b}$],求实数a,b的值.

分析 (1)根据函数的奇偶性求出t的值;
(2)由(1)求出f(x)的解析式,求出E的元素,求出λ的值,判断即可;
(3)根据函数的单调性得到关于a,b的方程组,解出即可.

解答 解:(1)∵f(x)是偶函数,
∴$\frac{(x+2)(x-t)}{{x}^{2}}$=$\frac{(-x+2)(-x-t)}{{x}^{2}}$,
∴2(t-2)x=0,
∵x是非0实数,故t-2=0,解得:t=2;
(2)由(1)得,f(x)=$\frac{{x}^{2}-4}{{x}^{2}}$,
∴E={y|y=f(x),x∈{1,2,3}}={-3,0,$\frac{5}{9}$},
而λ=lg22+lg2lg5+lg5-1=lg2+lg5-1=0,
∴λ∈E;
(3)∵f(x)=1-$\frac{4}{{x}^{2}}$,
∴f(x)在[a,b]递增,
∵函数f(x)的值域是[2-$\frac{5}{a}$,2-$\frac{5}{b}$],
∴$\left\{\begin{array}{l}{f(a)=1-\frac{4}{{a}^{2}}=2-\frac{5}{a}}\\{f(b)=1-\frac{4}{{b}^{2}}=2-\frac{5}{b}}\end{array}\right.$,
∵b>a>0,
解得:a=1,b=4.

点评 本题考查了函数的单调性、奇偶性问题,考查集合和元素的关系,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a+b=(  )
A.$-\frac{1}{3}$B.1C.0D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|2<x<4},B={x|x<3或x>5},则A∪∁RB=(  )
A.{x|2<x≤5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x≥5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是(  )
A.y=log2(x+3)B.y=2|x|+1C.y=-x2-1D.y=3-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平行四边形ABCD中,E,F分别是CD和BC的中点,若$\overrightarrow{AE}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$(x,y∈R),则2x+y=2;若$\overrightarrow{AC}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{AF}$(λ,μ∈R),则3λ+3μ=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若点P(3,1)为圆(x-2)2+y2=16的弦AB的中点,则直线AB的方程为(  )
A.x-3y=0B.2x-y-5=0C.x+y-4=0D.x-2y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过点(-3,-1)且与直线x-2y+3=0平行的直线方程是(  )
A.2x+y+7=0B.2x-y+5=0C.x-2y+1=0D.x-2y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知△ABC的外接圆半径为2,D为该圆上一点,且$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{AD}$,则△ABC的面积的最大值为(  )
A.3B.4C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+\sqrt{7}cosα\\ y=\sqrt{7}sinα\end{array}\right.$(其中α为参数),曲线${C_2}:{({x-1})^2}+{y^2}=1$,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C1的普通方程和曲线C2的极坐标方程;
(Ⅱ)若射线$θ=\frac{π}{3}({ρ>0})$与曲线C1,C2分别交于A,B两点,求|AB|.

查看答案和解析>>

同步练习册答案