精英家教网 > 高中数学 > 题目详情

已知函数f(x)=xlnx,g(x)=-x2+2ax-3.
(1)求f(x)在区间[1,3]上的最小值.
(2)若f(x),g(x)在区间[1,3]上单调性相同,求实数α的取值范围.
(3)求证:对任意的α,都有数学公式

解:(1)函数f(x)=xlnx,f′(x)=lnx+1,当x∈[1,3]时,f′(x)>0,
因此f(x)在[1,3]上为单调递增函数,所以f(x)min=f(1)=0
(2)要求f(x),g(x)在区间[1,3]上单调性相同,而f(x)在[1,3]上为单调递增函数,所以g(x)在区间[1,3]上单调递增,因为g(x)=-x2+2ax-3,g′(x)=-2x+2a,即g′(x)≥0当x∈[1,3]时恒成立,
所以-2x+2a≥0,因此a≥x,当x∈[1,3]时恒成立,
所以a的取值范围是[3,+∞).
(3)函数f(x)=xlnx,f′(x)=lnx+1,可知函数f(x)在(0,+∞)上的最小值为f()=-
设h(x)=,则h′(x)=,可知函数h(x)在(0,+∞)上的最大值为h(1)=-,所以当x∈(0,+∞)时,f(x)≥f()=-=h(1)≥h(x),
综上所述,当x∈(0,+∞)时,
分析:(1)求出f′(x),然后在区间[1,3]上判断导函数的正负决定函数的增减性,然后得到函数的最小值即可;
(2)由(1)得到f(x)在[1,3]上为增函数,所以得到g(x)也为增函数,即得到g′(x)>0,求出a的最小值,即可得到a的取值范围;(3)在区间(0,+∝)上求出f(x)的最小值,设h(x)=,求出导函数得到h(x)的最大值,让f(x)的最小值大于h(x)的最大值得证.
点评:考查学生会利用导数研究函数的极值及会利用导数研究函数的单调性,掌握函数恒成立时所取的条件.此题是一道综合题,要求学生掌握知识要全面.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案