精英家教网 > 高中数学 > 题目详情
7.从N个编号中要抽取n个号码入样,若采用系统抽样方法抽取,则分段间隔应为([$\frac{N}{n}$]表示$\frac{N}{n}$的整数部分)(  )
A.$\frac{N}{n}$B.nC.[$\frac{N}{n}$]D.[$\frac{N}{n}$]+1

分析 按照系统抽样的法则,抽样的间隔应是个体总数除以样本容量,当此比值不是整数时,抽样间隔就取此比值的整数部分.

解答 解:从N个编号中抽n个号码入样,按照系统抽样的规则,$\frac{N}{n}$为整数时,分段的间隔为$\frac{N}{n}$,
$\frac{N}{n}$不是整数时,分段的间隔为[$\frac{N}{n}$].
故选 C.

点评 本题考查系统抽样方法,是一个基础题,这种题目的关键是熟悉整个抽样过程.抽样的间隔是个体总数除以样本容量这个比值的整数部分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)的定义域为R,且f(x)>1-f′(x),f(0)=4,则不等式f(x)>1+eln3-x的解集为(  )
A.(0,+∞)B.$({\frac{1}{2},+∞})$C.(1,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={0,1,2,3},B={x|x(x-3)<0},则A∩B=(  )
A.{0,1,2,3}B.{0,1,2}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若一次函数f(x)=ax+b有一个零点1,则函数g(x)=bx2-ax的零点是0,-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某电脑公司有6名产品推销员,其工作年限和年推销金额数据如表:
推销员编号12345
工作年限x/年35679
年推销金额y/万元609090120150
(1)画出散点图;
(2)求年推销金额y关于工作年限x的线性回归方程;
(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足x2+y2=4(y≥0),则m=$\sqrt{3}$x+y的取值范围是(  )
A.(-2$\sqrt{3}$,4)B.[-2$\sqrt{3}$,4]C.[-4,4]D.[-4,2$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知α∈($\frac{π}{2}$,π),且cosα=-$\frac{24}{25}$,则$\frac{tan(α+\frac{15}{2}π)}{cos(α+7π)}$=(  )
A.$\frac{7}{25}$B.-$\frac{7}{25}$C.$\frac{25}{7}$D.-$\frac{25}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.将下列函数配方:
(1)f(x)=x2-2x+3
(2)f(x)=3x2+6x-1
( 3 )f(x)=-2x2+3x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).某公司每月最多生产100台报警系统装置,生产x(x∈N*)台的收入函数为R(x)=3000x+ax2(单位:元),其成本函数为C(x)=kx+4000(单位:元),利润是收入与成本之差.当生产10台时,成本为9000元,利润为19000元.
(1)求利润函数P(x)及边际利润函数MP(x);
(2)利润函数P(x)与边际利润函数MP(x)是否具有相同的最大值?

查看答案和解析>>

同步练习册答案