已知函数,
⑴求证函数在上的单调递增;
⑵函数有三个零点,求的值;
⑶对恒成立,求a的取值范围。
(1)详见解析;(2);(3).
解析试题分析:(1)证明函数在某区间单调递增,判断其导函数在此区间上的符号即可;(2)判断函数零点的个数一般可从方程或图象两个角度考察,但当函数较为复杂,难以画出它的图象时,可以将其适当等价转化,变为判断两个函数图象交点个数;(3)恒成立问题则常用分离参数的方法,转化为求函数的最值问题,也可直接考察函数的性质进行解决,本题则可转化为,而求则可利用导数去判断函数的单调性,还要注意分类讨论.
试题解析:⑴证明:,
函数在上单调递增. 3分
⑵解:令,解得
,函数有三个零点,有三个实根,极小值1
. 7分
⑶由⑵可知在区间单调递减,在区间单调递增,
,
又,
设,则
在上单调递增,,即,
,
所以,对于,
. 12分
考点:函数的单调性、函数的零点、不等式恒成立问题.
科目:高中数学 来源: 题型:解答题
已知函数,,其中.
(Ⅰ)讨论的单调性;
(Ⅱ)若在其定义域内为增函数,求正实数的取值范围;
(Ⅲ)设函数,当时,若,,总有成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,其中是自然对数的底数,.
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,的图象经过和两点,如图所示,且函数的值域为.过该函数图象上的动点作轴的垂线,垂足为,连接.
(I)求函数的解析式;
(Ⅱ)记的面积为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
(1)若时,求函数在点处的切线方程;
(2)若函数在上是减函数,求实数的取值范围;
(3)令是否存在实数,当是自然对数的底)时,函数的最小值是3,
若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com