精英家教网 > 高中数学 > 题目详情
4.已知lg2=0.3010,由此可以推断22015是(  )位整数.
A.605B.606C.607D.608

分析 令22015=t,两边取对数后求得lgt,由此可得22014的整数位.

解答 解:∵lg2=0.3010,
令22015=t,
∴2015×lg2=lgt,
则lgt=2015×0.3010=606.515,
∴22015是607位整数.
故选:C.

点评 本题考查指数式与对数式的互化,考查了对数的运算性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在△A BC中,内角A,B,C的对边分别是a,b,c,若c=2a,bsinB-asinA=$\frac{1}{2}$asinC则cosB等于(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列结论中正确的是(  )
A.各个面都是三角形的几何体是三棱锥
B.以三角形的一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥
C.当正棱锥的侧棱长与底面多边形的边长相等时该棱锥可能是六棱锥
D.圆锥的顶点与底面圆周上的任一点的连线都是母线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,且2$\sqrt{3}$cos2$\frac{C}{2}$=sinC+$\sqrt{3}$+1.
(1)求角C的大小;
(2)若a=2$\sqrt{3}$,c=2,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知椭圆的长轴长为10,离心率为$\frac{4}{5}$,求椭圆的标准方程;
(2)求与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有相同焦点,且经过点(3$\sqrt{2}$,2)的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.椭圆$\frac{x^2}{4}+{y^2}=1$两个焦点分别是F1,F2,点P是椭圆上任意一点,则$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的取值范围是[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,分别根据下列条件解三角形,其中两解的是(  )
A.a=7,b=14,a=30°B.a=17,b=8,a=135°C.a=3,b=4,a=27°D.a=10,b=7,a=60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面不等式不成立的是(  )
A.90.7<90.8B.${({\frac{1}{2}})^{-0.1}}$>${({\frac{1}{2}})^{0.1}}$C.log20.6<log20.8D.log0.25>log0.22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知两圆C1:(x-1)2+y2=9.C2:(x+1)2+y2=1,动圆在圆C1内部且与圆C1相内切,与圆C2向外切
(1)求动圆圆心C的轨迹方程;
(2)已知A(-2,0),过A作斜率分别为k1,k2的两条直线交曲线C于D,E两点,且k1•k2=2,求证:直线DE过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案