【题目】已知函数f(x)=2+ 的图象经过点(2,3),a为常数.
(1)求a的值和函数f(x)的定义域;
(2)用函数单调性定义证明f(x)在(a,+∞)上是减函数.
【答案】
(1)解:函数f(x)=2+ 的图象经过点(2,3),
∴2+ =3,解得a=1;
∴f(x)=2+ ,且x﹣1≠0,则x≠1,
∴函数f(x)的定义域为{x|x≠1};
(2)解:用函数单调性定义证明f(x)在(1,+∞)上是减函数如下;
设1<x1<x2,则
f(x1)﹣f(x2)=(2+ )﹣(2+ )= ,
∵1<x1<x2,∴x2﹣x1>0,x1﹣1>0,x2﹣1>0,
∴f(x1)>f(x2),
∴f(x)在(1,+∞)上是减函数.
【解析】(1)把点(2,3)代入函数解析式求出a的值;根据f(x)的解析式,求出它的定义域;(2)用单调性定义证明f(x)在(1,+∞)上是减函数即可.
【考点精析】认真审题,首先需要了解函数的定义域及其求法(求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零),还要掌握函数单调性的判断方法(单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1=an+2,数列{bn}的前n项和为Sn , 且Sn=2﹣bn .
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=anbn , 求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为 (θ为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为 .
(1)求曲线C的普通方程及直线l的直角坐标方程;
(2)设P是曲线C上的任意一点,求点P到直线l的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点A与点A′在x轴上,且关于y轴对称,过点A′垂直于x轴的直线与抛物线y2=2x交于两点B,C,点D为线段AB 上的动点,点E在线段AC上,满足 .
(1)求证:直线DE与此抛物线有且只有一个公共点;
(2)设直线DE与此抛物线的公共点F,记△BCF与△ADE的面积分别为S1、S2 , 求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期为4π,且对x∈R,有f(x)≤f( )成立,则关于函数f(x)的下列说法中正确的是( )
①φ=
②函数f(x)在区间[﹣π,π]上递减;
③把g(x)=sin 的图象向左平移 得到f(x)的图象;
④函数f(x+ )是偶函数.
A.①③
B.①②
C.②③④
D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x+a)lnx在x=1处的切线方程为y=x﹣1.
(Ⅰ)求a的值及f(x)的单调区间;
(Ⅱ)记函数y=F(x)的图象为曲线C,设点A(x1 , y1),B(x2 , y2)是曲线C上不同的两点,如果在曲线C上存在点M(x0 , y0),使得①x0= ;②曲线C在点M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.试证明:函数f(x)不存在“中值相依切线”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,AB=AC=2,BCcos(π﹣A)=1,则cosA的值所在区间为( )
A.(﹣0.4,﹣0.3)
B.(﹣0.2,﹣0.1)
C.(﹣0.3,﹣0.2)
D.(0.4,0.5)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=1,a3=9,且an=an﹣1+λn﹣1(n≥2).
( I)求λ的值及数列{an}的通项公式;
( II)设 ,且数列{bn}的前n项和为Sn , 求S2n .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com