精英家教网 > 高中数学 > 题目详情

【题目】设抛物线的焦点为,过且斜率为的直线交抛物线于两点.若线段的垂直平分线与轴交于点,则( )

A. B. C. D.

【答案】D

【解析】

由题意可知:抛物线y2=2px(p>0)的焦点为F(,0),直线AB的斜率为,则垂直平分线的斜率为﹣,且与x轴交于点M(11,0),则y=﹣(x﹣11),则直线AB的方程为y=(x﹣),代入抛物线方程,由韦达定理可知:x1+x2=,根据中点坐标公式求得中点P坐标,代入AB的垂直平分线方程,即可求得p的值.

由题意可知:抛物线y2=2px(p>0)的焦点为F(,0),

直线AB的斜率为,则垂直平分线的斜率为﹣,且与x轴交于点M(11,0),则y=﹣(x﹣11),

设直线AB的方程为:y=(x﹣),A(x1,y1),B(x2,y2),AB的中点为P(x0,y0),

,整理得:3x2﹣5px+=0,

由韦达定理可知:x1+x2=

由中点坐标公式可知:x0=,则y0=

由P在垂直平分线上,则y0=﹣(x0﹣11),即p=﹣(﹣11),

解得:p=6,

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其左顶点在圆上.

(1)求椭圆的方程;

(2)若点为椭圆上不同于点 的点,直线与圆的另一个交点为.是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若存在,使得,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)

分数

甲班频数

乙班频数

(Ⅰ)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?

甲班

乙班

总计

成绩优秀

成绩不优秀

总计

(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取人进行考核,记“成绩不优秀”的乙班人数为,求的分布列和期望.

参考公式:,其中

临界值表

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】( 本小题满分14)

如图,在三棱锥PABC中,PC底面ABCABBCDE分别是ABPB的中点.

(1)求证:DE平面PAC

(2)求证:ABPB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆经过定点,且与直线相切,设动圆圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设过点的直线分别与曲线交于两点,直线的斜率存在,且倾斜角互补,证明:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥EABCD中,底面ABCD是边长为2的正方形,且DE,平面ABCD⊥平面ADE,∠ADE30°

(1)求证:AE⊥平面CDE

(2)求AB与平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义实数ab间的计算法则如下.

1)计算

2)对的任意实数xyz,判断的大小,并说明理由;

3)写出函数的解析式,作出该函数的图象,并写出该函数单调递增区间和值域(只需要写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,设

(Ⅰ)求函数的定义域,判断的奇偶性,并说明理由;

(Ⅱ)若,求使成立的的集合.

查看答案和解析>>

同步练习册答案