【题目】设抛物线的焦点为,过且斜率为的直线交抛物线于,两点.若线段的垂直平分线与轴交于点,则( )
A. B. C. D.
【答案】D
【解析】
由题意可知:抛物线y2=2px(p>0)的焦点为F(,0),直线AB的斜率为,则垂直平分线的斜率为﹣,且与x轴交于点M(11,0),则y=﹣(x﹣11),则直线AB的方程为y=(x﹣),代入抛物线方程,由韦达定理可知:x1+x2=,根据中点坐标公式求得中点P坐标,代入AB的垂直平分线方程,即可求得p的值.
由题意可知:抛物线y2=2px(p>0)的焦点为F(,0),
直线AB的斜率为,则垂直平分线的斜率为﹣,且与x轴交于点M(11,0),则y=﹣(x﹣11),
设直线AB的方程为:y=(x﹣),A(x1,y1),B(x2,y2),AB的中点为P(x0,y0),
,整理得:3x2﹣5px+=0,
由韦达定理可知:x1+x2=,
由中点坐标公式可知:x0=,则y0=,
由P在垂直平分线上,则y0=﹣(x0﹣11),即p=﹣(﹣11),
解得:p=6,
故选:C.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,其左顶点在圆上.
(1)求椭圆的方程;
(2)若点为椭圆上不同于点 的点,直线与圆的另一个交点为.是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)
分数 | |||||||
甲班频数 | |||||||
乙班频数 |
(Ⅰ)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取人进行考核,记“成绩不优秀”的乙班人数为,求的分布列和期望.
参考公式:,其中.
临界值表
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】( 本小题满分14)
如图,在三棱锥P—ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.
(1)求证:DE∥平面PAC
(2)求证:AB⊥PB
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆经过定点,且与直线相切,设动圆圆心的轨迹为曲线.
(1)求曲线的方程;
(2)设过点的直线,分别与曲线交于,两点,直线,的斜率存在,且倾斜角互补,证明:直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥E﹣ABCD中,底面ABCD是边长为2的正方形,且DE=,平面ABCD⊥平面ADE,∠ADE=30°
(1)求证:AE⊥平面CDE;
(2)求AB与平面BCE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义实数a,b间的计算法则如下.
(1)计算;
(2)对的任意实数x,y,z,判断与的大小,并说明理由;
(3)写出函数,的解析式,作出该函数的图象,并写出该函数单调递增区间和值域(只需要写出结果).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com