精英家教网 > 高中数学 > 题目详情
12.已知数列${a_1}=\frac{1}{3}$、${a_1}=\frac{1}{3}$满足:${a_1}=\frac{1}{3}$,an+bn=1,${b_{n+1}}=\frac{1}{{2-{b_n}}}$.
(1)求证:数列{$\frac{1}{{b}_{n}-1}$}是等差数列;
(2)求数列{an}的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求Sn

分析 (1)进行变形得到$\frac{1}{{b}_{n+1}-1}$=-1+$\frac{1}{{b}_{n}-1}$,故{$\frac{1}{{b}_{n}-1}$}是等差数列,
(2)并求出其通项,进而可求出数列{an}的通项公式;
(3)根据(2)结果,然后利用裂项相消法求Sn

解答 解:(1)证明:∵${b_{n+1}}=\frac{1}{{2-{b_n}}}$,
∴bn+1-1=$\frac{1}{2-{b}_{n}}$-1,
∴$\frac{1}{{b}_{n+1}-1}$=$\frac{2-{b}_{n}}{{b}_{n}-1}$=-1+$\frac{1}{{b}_{n}-1}$,
∵${a_1}=\frac{1}{3}$,an+bn=1,
∴b1=$\frac{2}{3}$,
∴$\frac{1}{{b}_{1}-1}$=-3,
∴{$\frac{1}{{b}_{n}-1}$}是以-3为首项,-1为公差的等差数列;
(2)由(1)可得$\frac{1}{{b}_{n}-1}$=-3-(n-1)=-n-2,
∴bn=1-$\frac{1}{n+2}$=$\frac{n+1}{n+2}$,
∵an+bn=1,
∴an=1-bn=1-(1-$\frac{1}{n+2}$)=$\frac{1}{n+2}$,
∴anan+1=$\frac{1}{(n+2)(n+3)}$=$\frac{1}{n+2}$-$\frac{1}{n+3}$
∴Sn=a1a2+a2a3+a3a4+…+anan+1=($\frac{1}{3}$-$\frac{1}{4}$)+($\frac{1}{4}$-$\frac{1}{5}$)+…+($\frac{1}{n+2}$-$\frac{1}{n+3}$)=$\frac{1}{3}$-$\frac{1}{n+3}$=$\frac{n}{3n+9}$.

点评 本题考查根据数列的递推公式利用构造法求数列的通项公式,及数列的求和问题,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.集合A含有两个元素a-3和2a-1,则实数a的取值范围是a≠-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设i是虚数单位,$\frac{2+ai}{{1+\sqrt{2}i}}=-\sqrt{2}i$,则实数a=(  )
A.$-\sqrt{2}$B.$\sqrt{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2x+2ax+b且$f(1)=\frac{5}{2}$,$f(2)=\frac{17}{4}$
(Ⅰ)求a,b的值;
(Ⅱ)判断并证明f(x)的奇偶性;
(Ⅲ)试判断f(x)在(-∞,0)上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列{an}是等差数列,数列{bn}满足bn=anan+1an+2(n∈N*),设Sn为{bn}的前n项和,若${a_{12}}=\frac{5}{8}{a_5}>0$,则当Sn取得最大值时n的值为(  )
A.21B.22C.23D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若一抛物线的顶点在原点,焦点为F(0,$\frac{1}{2}$),在该抛物线的方程为(  )
A.y2=$\frac{1}{8}$xB.y2=2xC.y=2x2D.y=$\frac{1}{2}$x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.求函数y=$\frac{lg(4-x)}{\sqrt{{x}^{2}-2x-3}}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出如下四个命题:
①若“p∧q”为假命题,则p,q均为假命题;
②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”;
③命题“任意x∈R,x2+1≥0”的否定是“存在x0∈R,x0+1<0”;
④函数f(x)在x=x0处导数存在,若p:f′(x0)=0;q:x=x0是f(x)的极值点,则p是q的必要条件,但不是 q的充分条件;
其中真命题的个数是(  )
A..1B..2C..3D..4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在空间直角坐标系中,点(1,2,3)关于平面xoy对称的点坐标是(1,2,-3).

查看答案和解析>>

同步练习册答案