精英家教网 > 高中数学 > 题目详情

【题目】在等差数列中,,且前7项和.

(1)求数列的通项公式;

(2),求数列的前项和.

【答案】1;(2Sn3n+1+

【解析】

1)等差数列{an}的公差设为d,运用等差数列的通项公式和求和公式,计算可得所求通项公式;

2)求得bn2n3n,由数列的错位相减法求和即可.

1)等差数列{an}的公差设为da36,且前7项和T756

可得a1+2d67a1+21d56,解得a12d2,则an2n

2bnan3n2n3n

n项和Sn213+232+333++n3n),

3Sn2132+233+334++n3n+1),

相减可得﹣2Sn23+32+33++3nn3n+1)=2n3n+1),

化简可得Sn3n+1+

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列三个命题,其中所有错误命题的序号是______

抛物线的准线方程为

过点作与抛物线只有一个公共点的直线t仅有1条;

是抛物线上一动点,以P为圆心作与抛物线准线相切的圆,则这个圆一定经过一个定点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】央视人民网报道:2019715日,平顶山市文物管理局有关人士表示,郏县北大街古墓群抢救性发掘工作结束,共发现古墓539座,已发掘墓葬93座。该墓地是一处大型古墓群,在已发掘的93座墓葬中,有战国时期墓葬32座、两汉时期墓葬56座、唐墓2座、宋墓3座。生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为半衰期.检测一墓葬女尸出土时碳14的残余量约占原始含量的79%,则可推断为该墓葬属于( )时期(辅助数据:

参考时间轴:

A.战国B.两汉C.唐朝D.宋朝

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

已知曲线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;

(Ⅱ)若曲线与曲线相交于两点,且与轴相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,横、纵坐标均为整数的点叫做格点若函数的图象恰好经过个格点,则称函数阶格点函数.下列函数中为一阶格点函数的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程

(2)函数与函数的图像总有两个交点设这两个交点的横坐标分别为.

(ⅰ)求的取值范围

(ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆.由直线上离圆心最近的点向圆引切线切点为则线段的长为__________

【答案】

【解析】圆心到直线的距离:

结合几何关系可得线段的长度为.

型】填空
束】
16

【题目】是两个非零平面向量则有

①若

②若

③若则存在实数使得

④若存在实数使得四个命题中真命题的序号为 __________.(填写所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.

(1)求关于的函数关系式;

(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-5:不等式选讲)

设函数

(1)a=1,试求的解集;

(2)a>0,且关于x的不等式有解,求实数a的取值范围

查看答案和解析>>

同步练习册答案