精英家教网 > 高中数学 > 题目详情

【题目】已知 =(2,1), =(1,7), =(5,1),设R是直线OP上的一点,其中O是坐标原点.
(1)求使 取得最小值时 的坐标的坐标;
(2)对于(1)中的点R,求 夹角的余弦值.

【答案】
(1)解:由题意,设 =t =(2t,t),

= =(1﹣2t,7﹣t),

= =(5﹣2t,1﹣t).

所以 =(1﹣2t)(5﹣2t)+(7﹣t)(1﹣t)=5t2﹣20t+12=5(t﹣2)2﹣8,

所以当t=2时, 最小,即 =(4,2).


(2)解:设向量 的夹角为θ,由(1)得 =(﹣3,5), =(1,﹣1),

所以cosθ= = =﹣


【解析】(1)利用坐标法求出 的坐标,结合向量数量积的定义转化为一元二次函数,利用一元二次函数的性质进行求解.(2)根据向量数量积的应用进行求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面四边形是直角梯形,其中.

(Ⅰ)求证:直线平面

(Ⅱ)试求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,地面上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高为10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.

(1)若圆形标志物半径为25m,以PG所在直线为x轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;
(2)若在点P处观测该圆形标志的最大视角(即∠APF)的正切值为 ,求该圆形标志物的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项的和Sn,点(n,Sn)在函数=2x2+4x图象上

(1)证明是等差数列;

(2)若函数,数列{bn}满足bn=,记cn=anbn,求数列前n项和Tn

(3)是否存在实数λ,使得当x≤λ时,f(x)=﹣x2+4x﹣≤0对任意n∈N*恒成立?若存在,求出最大的实数λ,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图(如图所示),已知图中从左到右前三个小组的频率分别时0.1,0.3,0.4,第一小组的频数为5.

(1)求第四小组的频率?

(2)问参加这次测试的学生人数是多少?

(3)问在这次测试中,学生跳绳次数的中位数落在第几小组内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= sin2x+2+2cos2x.
(1)求f(x)的最小正周期与单调递减区间;
(2)在△ABC中,a,b,c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,当k为何值时,
(1) 垂直?
(2) 平行?平行时它们是同向还是反向?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程.

在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,设线段的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农场计划种植某种新作物,为此对这种作物的两个品种分别称为品种甲和品种乙进行田间试验选取两大块地,每大块地分成小块地,在总共小块地中,随机选小块地种植品种甲,另外小块地种植品种乙

1假设,求第一大块地都种植品种甲的概率;

2试验时每大块地分成小块,即,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量单位:kg/hm2如下表:

分别求品种甲和品种乙的每公顷产量的样本平均和样本方差;根据试验结果,你认为应该种植哪一品种?

查看答案和解析>>

同步练习册答案