精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

(1)讨论的单调性;

(2)当时,若函数的图象全部在直线的下方,求实数的取值范围.

【答案】(1)见解析;(2).

【解析】试题分析:(1)求导数,分两种情况进行讨论,可得函数的单调区间;

2函数的图象全部在直线的下方,等价于上恒成立,令,则.分两种情况讨论函数的情况即可.

试题解析:(1)函数的定义域为,且

时, ,函数上单调递减;

时,由,得,∴上单调递增;由,得,∴上单调递减.

(2)当时, ,则由题意知,不等式

上恒成立.

,则

时,则 在区间上是增函数. 

,∴不等式上不恒成立.

时, 有唯一零点,即函数的图象与轴有唯一交点,

即不等式上不恒成立.

时,令,得,则在区间上, 是增函数;

在区间上, 是减函数;

故在区间上, 的最大值为

,得,即的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某地区中学生的身体发育状况,拟采用分层抽样的方法从甲、乙、丙三所中学抽取个教学班进行调查.已知甲、乙、丙三所中学分别有 个教学班.

(Ⅰ)求从甲、乙、丙三所中学中分别抽取的教学班的个数.

)若从抽取的个教学班中随机抽取个进行调查结果的对比,求这个教学班中至少有一个来自甲学校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,椭圆 的长轴长为4,离心率为.

(1)求椭圆的标准方程;

(2)过右焦点作一条不与坐标轴平行的直线,若交椭圆两点,点关于原点的对称点为,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为,定点A(-2,0),B(2,0).

(1) 若椭圆C上存在点T,使得,求椭圆C的离心率的取值范围;

(2) 已知点在椭圆C上.

①求椭圆C的方程;

②记M为椭圆C上的动点,直线AMBM分别与椭圆C交于另一点PQ,若 .求λμ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 的离心率为,过其右焦点与长轴垂直的直线与椭圆在第一象限相交于点 .

(1)求椭圆的标准方程;

(2)设椭圆的左顶点为,右顶点为,点是椭圆上的动点,且点与点 不重合,直线与直线相交于点,直线与直线相交于点,求证:以线段为直径的圆恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形和梯形所在平面互相垂直 , .

(Ⅰ)求证 平面;

(Ⅱ)当的长为何值时,二面角的大小为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)若,求的极小值;

(Ⅱ)在(Ⅰ)的条件下,是否存在实常数,使得?若存在,求出的值.若不存在,说明理由;

(Ⅲ)设有两个零点,且成等差数列,试探究值的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若曲线与直线相切于点,求点的坐标.

)令,当时,求的单调区间.

)当,证明:当

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)若函数处取得极值,求实数的值;并求此时上的最大值;

()若函数不存在零点,求实数a的取值范围;

查看答案和解析>>

同步练习册答案