精英家教网 > 高中数学 > 题目详情
如图,椭圆Γ:
x2
4
+
y2
3
=1
,动直线l1:x=x1(-2<x<0),点A1,A2分别为
椭圆Γ的左、右顶点,l1与椭圆Γ相交于A,B两点(点A在第二象限).
(Ⅰ)求直线AA1与直线A2B交点M的轨迹方程;
(Ⅱ)设动直线l2:x=x2(-2<x<2,x1≠x2)与椭圆Γ相交于C,D两点,△OAB与△OCD的面积相等.证明:|OA|2+|OD|2为定值.
考点:轨迹方程,直线与圆锥曲线的关系
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)求出直线A1A的方程、直线A2B的方程,联立,结合点A(x1,y1)在椭圆Γ上,即可求直线AA1与直线A2B交点M的轨迹方程;
(Ⅱ)设C(x2,y2),由△OAB与△OCD的面积相等,得|x1||y1|=|x2||y2|⇒x12y12=x22y22,结合点A,C均在椭圆上,即可证明结论.
解答: (Ⅰ)解:设A(x1,y1),B(x1,-y1),又A1(-2,0),A2(2,0),
则直线A1A的方程为:y=
y1
x1+2
(x+2)

直线A2B的方程为:y=
-y1
x1-2
(x-2)

由①②得:y2=
-y12
x12-4
(x2-4)

由点A(x1,y1)在椭圆Γ上,故可得
x12
4
+
y12
3
=1

y12=3(1-
x12
4
)
,代入③得:
x2
4
-
y2
3
=1(x<-2,y<0)


(Ⅱ)证明:设C(x2,y2),
由△OAB与△OCD的面积相等,得|x1||y1|=|x2||y2|⇒x12y12=x22y22
因为点A,C均在椭圆上,
3x12(1-
x12
4
)=3x22(1-
x22
4
)

由x1≠x2,所以x12+x22=4
y12+y22=3
∴|OA|2+|OD|2=7为定值
点评:本题考查椭圆方程,考查三角形面积的计算,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}为等比数列,a1=1,a4=8,在an和an+1之间插入bn个数得到一个新数列{cn},已知b1=1,{cn}为等差数列
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点P为△ABC所在平面外任一点点D、E、F分别在射线PA、PB、PC上并且
PD
PA
=
PE
PB
=
PF
PC
求证平面DEF∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有一正四面体型骰子,四个面上分别标有数字1,、2、3、4,先后抛掷两次,记底面数字分别为a,b
设点P(a,b),求
(1)点P落在区域
x+y≤4
x≥0
y≥0
内的概率;
(2)将a,b,3作为三条线段长,求三条线段能围成等腰三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的半径为3,圆心C在直线2x+y=0上且在x轴的下方,x轴被圆C截得的弦长BD为2
5

(1)求圆C的方程;
(2)若圆E与圆C关于直线2x-4y+5=0对称,P(x,y)为圆E上的动点,求
(x-1)2+(y+2)2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

sin21°+sin22°+sin23°+sin288°+sin289°+sin290°=(  )
A、45
B、45
1
2
C、
46+
2
2
D、
90+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2x-3
ln(-x2+4x-3)
的定义域为
 
.(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x≤3,且x∈N},B={y|y=x2,x∈A},C={x|mx=1}.
(1)求A∩B;
(2)若C⊆(A∩B),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若2x=8Y+1且9y=3x-9,则x+y的值是(  )
A、18B、24C、21D、27

查看答案和解析>>

同步练习册答案