精英家教网 > 高中数学 > 题目详情

【题目】某销售公司为了解员工的月工资水平,从1000位员工中随机抽取100位员工进行调查,得到如下的频率分布直方图:

(1)试由此图估计该公司员工的月平均工资;

(2)该公司工资发放是以员工的营销水平为重要依据来确定的,一般认为,工资低于4500。元的员工属于学徒阶段,没有营销经验,若进行营销将会失败;高于4500元的员工是具备营销成熟员工,基进行营销将会成功。现将该样本按照“学徒阶段工资”、“成熟员工工资”分成两层,进行分层抽样,从中抽出5人,在这5人中任选2人进行营销活动。活动中,每位员工若营销成功,将为公司赢得3万元,否则公司将损失1万元。试问在此次比赛中公司收入多少万元的可能性最大?

【答案】(1)(2)收入2万元的可能性最大.

【解析】试题分析:(1)根据频率分布直方图计算平均数公式,每个小矩形底边的中点值乘以本组小矩形的面积和就是平均工资;(2)首先计算抽样比 ,分别计算 的人数,以及抽取的人数,分别为2人和3人,分别编号,列举所有抽取2人的结果,公司的收入情况为6万元,2万元,和-2万元,分别计算其概率,比较可能性.

试题解析:(1)由此图估计该公司员工的月平均工资:

元.

(2)抽取比为

从工资在[1500,4500)区间内抽人,设这两位员工分别为1,2;从工资在[4500,7500]区间内抽人,设这三位员工分别为.

从中任选2人,共有以下10种不同的等可能结果:(1,2), .

两人营销都成功,公司收入6万元,有以下3种不同的等可能结果: ;概率为

其中一人营销成功,公司收入为2万元,有以下6种不同的等可能结果: ,概率为

两人营销都失败,公司收入-2万元,即损失2万元,有1种结果:(1,2),概率为.

,∴收入2万元的可能性最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}
(1)若a= , 求A∩B.
(2)若A∩B=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=(x>0),则给出以下四个结论:
①函数f(x)的值域为[0,1];
②函数f(x)的图象是一条曲线;
③函数f(x)是(0,+∞)上的减函数;
④函数g(x)=f(x)﹣a有且仅有3个零点时
其中正确的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求函数的单调区间;

)当时,证明:(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列命题中,正确的是( )

A. 垂直于同一个平面的两个平面互相平行 B. 垂直于同一个平面的两条直线互相平行

C. 平行于同一个平面的两条直线互相平行 D. 平行于同一条直线的两个平面互相平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄(单位:岁)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.

参考数据如下:

附临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的观测值: (其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用min{a,b,c}表示a,b,c三个数中的最小值,设f(x)=min{2x , x+2,10﹣x}(x≥0),则f(x)的最大值为(  )
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=loga(1﹣),其中0<a<1.
(Ⅰ)证明:f(x)是(a,+∞)上的减函数;
(Ⅱ)若f(x)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是数列的前项和, .

(1)求证:数列是等差数列,并求的通项;

(2)设,求数列的前项和.

查看答案和解析>>

同步练习册答案