精英家教网 > 高中数学 > 题目详情
已知函数,且函数在点处的切线方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)设点,当时,直线的斜率恒小于,试求实数的取值范围;
(Ⅲ)证明:.
(Ⅰ);(Ⅱ);(Ⅲ)详见解析.

试题分析:(Ⅰ)根据函数在点处的切线方程为,这一条件分离出两个条件,然后根据这两个条件列有关的二元一次方程组,解出的值进而确定函数的解析式;(Ⅱ)先将直线的斜率利用点的坐标表示,然后建立以为自变量的函数,对参数进行分类讨论,即可求出参数的取值范围;(Ⅲ)证明不等式,构造函数
,等价转化为,借助极小值,但同时需要注意有些时候相应整体的代换.
试题解析:(Ⅰ).   1分
函数在点处的切线方程为
  即, 解得,   2分
.     3分
(Ⅱ)由,得
∴“当时,直线的斜率恒小于时,恒成立恒成立.   4分
.
,   5分
(ⅰ)当时,由,知恒成立,
单调递增,
,不满足题意的要求.   6分
(ⅱ)当时,

∴当 ,;当.
单调递增;在单调递减.
所以存在使得,不满足题意要求.   7分
(ⅲ)当时,,对于恒成立,
单调递减,恒有,满足题意要求. 8分
综上所述:当时,直线的斜率恒小于.   9分
(Ⅲ)证明:令
, 10分

函数递增,上的零点最多一个.11分

存在唯一的使得,   12分
且当时,;当时,.
即当时,;当时,.
递减,在递增,
从而.    13分

,从而证得.     14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数有极小值
(Ⅰ)求实数的值;
(Ⅱ)若,且对任意恒成立,求的最大值为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排,在路南侧沿直线排,现要在矩形区域内沿直线将接通.已知,公路两侧排管费用为每米1万元,穿过公路的部分的排管费用为每米2万元,设所成的小于的角为

(Ⅰ)求矩形区域内的排管费用关于的函数关系式;
(Ⅱ)求排管的最小费用及相应的角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数在区间上存在极值点,求实数的取值范围;
(2)当时,不等式恒成立,求实数的取值范围;
(3)求证:.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数f(x)=ex+ax-1(e为自然对数的底数).
(Ⅰ)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;
(II)若f(x)x2在(0,1 )上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(其中),且函数的图象在点处的切线与函数的图象在点处的切线重合.
(Ⅰ)求实数a,b的值;
(Ⅱ)若,满足,求实数的取值范围;
(Ⅲ)若,试探究的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

规定其中为正整数,且=1,这是排列数(是正整数,)的一种推广.
(Ⅰ) 求的值;
(Ⅱ)排列数的两个性质:①,②(其中m,n是正整数).是否都能推广到(是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(Ⅲ)已知函数,试讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知 则=                            (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,则=          .

查看答案和解析>>

同步练习册答案