精英家教网 > 高中数学 > 题目详情

【题目】已知函数h(x)=(m2﹣5m+1)xm+1为幂函数,且为奇函数.
(1)求m的值;
(2)求函数g(x)=h(x)+ 在x∈[0, ]的值域.

【答案】
(1)解:∵函数h(x)=(m2﹣5m+1)xm+1为幂函数,

∴m2﹣5m+1=1,

∴m=5或m=0,

当m=5时,h(x)=x6是偶函数,不满足题意,

当m=0时,h(x)=x是奇函数,满足题意;

∴m=0


(2)解:∵g(x)=x+

∴g′(x)=1﹣

令g′(x)=0,解得x=0,

当g′(x)<0时,即x>0时,函数为减函数,

∴函数g(x)在[0, ]为减函数,

∴g( )≤g(x)≤g(0)

≤g(x)≤1

故函数g(x)的值域为[ ,1]


【解析】(1)首先根据函数是幂函数,可知m2﹣5m+1=1,再验证相应函数的奇偶性,即可求得实数m的值,(2)化简g(x),再求导,根据导数判断g(x)在∈[0, ]的为减函数,故求出值域

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在中, ,四边形是边长为的正方形,平面平面,若 分别是的中点.

(1)求证: 平面;

(2)求证:平面平面;

(3)求几何体的体和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数时取得最小值,且函数的图象在轴上截得的线段长为

(1)求函数的解析式;(2)当时,函数的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于四面体有以下命题:

1)若则过向底面作垂线,垂足为底面的外心;

2)若 则过向底面作垂线,垂足为底面的内心;

3)四面体的四个面中,最多有四个直角三角形;

4若四面体6条棱长都为1,则它的内切球的表面积为.

其中正确的命题是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,该程序运行后输出的k的值是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x),x∈R.

(1)求函数f(x)的最小正周期和单调递减区间;

(2)求函数f(x)在区间[- ]上的最小值和最大值,并求出取得最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x+1|+|2x﹣a|.
(1)若f(x)的最小值为2,求a的值;
(2)若f(x)≤|2x﹣4|的解集包含[﹣2,﹣1],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合.曲线 (t为参数),曲线C2的极坐标方程为ρ=ρcos2θ+8cosθ. (Ⅰ)将曲线C1 , C2分别化为普通方程、直角坐标方程,并说明表示什么曲线;
(Ⅱ)设F(1,0),曲线C1与曲线C2相交于不同的两点A,B,求|AF|+|BF|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:经过定点P0(x0 , y0)的直线都可以用方程y﹣y0=k(x﹣x0)表示,命题q:直线xtan +y﹣7=0的倾斜角是 ,则下列命题是真命题的为( )
A.(p)∧q
B.p∧q
C.p∨(q)
D.(P)∧(q)

查看答案和解析>>

同步练习册答案