精英家教网 > 高中数学 > 题目详情
已知定义在区间[-π,
2
]
上的函数y=f(x)图象关于直线x=
π
4
对称,当x≥
π
4
时,f(x)=-sinx.
(1)作出y=f(x)的图象;(2)求y=f(x)的解析式;
(3)若关于x的方程f(x)=a有解,将方程中的a取一确定的值所得的所有的解的和记为Ma,求Ma的所有可能的值及相应的a的取值范围.
分析:(1)先根据当x≥
π
4
时,f(x)=-sinx画出在[
π
4
2
]上的图象;再根据图象关于直线x=
π
4
对称把另一部分添上即可;
(2)先根据x∈[-π,
π
4
]得到
π
2
-x∈[
π
4
2
],再结合当x≥
π
4
时,f(x)=-sinx即可求出y=f(x)的解析式;
(3)结合图象可得:关于x的方程f(x)=a有解可以分为四个根,三个根,两个根三种情况,再分别对每种情况求出所有的解的和Ma即可.
解答:解:(1)y=f(x)的图象如图所示.
(2)任取x∈[-π,
π
4
],则
π
2
-x∈[
π
4
2
],因函数y=f(x)
图象关于直线x=
π
4
对称,
f(x)=f(
π
2
-x)
.,又当x≥
π
4
时,f(x)=-sinx,则f(x)=f(
π
2
-x)=-sin(
π
2
-x)=-cosx

f(x)=
-cosx,x∈[-π
π
4
)
-sinx,x∈[
π
4
2
]

(3)当a=-1时,f(x)=a的两根为0,
π
2
,则Ma=
π
2

a∈(-1,-
2
2
)时,f(x)=a的四根满足x1x2
π
4
x3x4
,由对称性得,x1+x2=0,x3+x4=π,则Ma=π;
a=-
2
2
时,f(x)=a的三根满足x1x2=
π
4
x3
,由对称性得,x3+x1=
π
2
,则Ma=
4
;当a∈(-
2
2
,1]时,f(x)=a两根为x1x2,则对称性得,Ma=
π
2

综上,当a∈(-1,-
2
2
)时,Ma=π;当a=-
2
2
Ma=
4
;当a∈(-
2
2
,1]∪{-1}时,Ma=
π
2
点评:本题主要考查分段函数的解析式求法及其图象的作法以及分类讨论思想的运用.解决第二问的关键在于根据x∈[-π,
π
4
]得到
π
2
-x∈[
π
4
2
].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在区间(-1,1)上的函数f(x)=
ax+b
x2+1
为奇函数.且f(
1
2
)=
2
5

(1)、求实数a、b的值.
(2)、求证:函数f(x)在区间(-1,1)上是增函数.
(3)、解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(0,+∞)上的函数f(x)满足f(
x1x2
)=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)判断并证明f(x)的单调性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

填空题
(1)已知
cos2x
sin(x+
π
4
)
=
4
3
,则sin2x的值为
1
9
1
9

(2)已知定义在区间[0,
2
]
上的函数y=f(x)的图象关于直线x=
4
对称,当x≥
4
时,f(x)=cosx,如果关于x的方程f(x)=a有四个不同的解,则实数a的取值范围为
(-1,-
2
2
)
(-1,-
2
2
)


(3)设向量
a
b
c
满足
a
+
b
+
c
=
0
(
a
-
b
)⊥
c
a
b
,若|
a
|=1
,则|
a
|2+|
b
|2+|
c
|2
的值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[-π,
2
]上的函数y=f(x)图象关于直线x=
π
4
对称,当x≥
π
4
时,f(x)=-sinx.
(1)作出y=f(x)的图象;
(2)求y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义在区间[0,1]上的函数y=f(x)的图象如图所示,对于满足0<x1<x2<1的任意x1,x2,给出下列结论:
①f(x2)-f(x1)>x2-x1
②[f(x2)-f(x1)]•(x2-x1)<0;
③x2f(x1)>x1f(x2);
f(x1)+f(x2)
2
<f(
x1+x2
2
)

其中正确的结论的序号是
 

查看答案和解析>>

同步练习册答案