精英家教网 > 高中数学 > 题目详情

【题目】如果函数f(x)=x3x满足:对于任意的x1x2∈[0,2],都有|f(x1)-f(x2)|≤a2恒成立,则a的取值范围是(  )

A. [- ]

B. [- ]

C. (-∞,- ]∪[,+∞)

D. (-∞,- ]∪[,+∞)

【答案】D

【解析】f′(x)=x2-1,

∴当0<x<1时,f′(x)<0,f(x)单调递减;

当1<x<2时,f′(x)>0,f(x)单调递增.

f(x)=x3xx=1时取到极小值,也是x∈[0,2]上的最小值,

f(x)极小值f(1)=-f(x)最小值

又∵f(0)=0,f(2)=

∴在x∈[0,2]上,f(x)最大值f(2)=,∵对于任意的x1x2∈[0,2],

∴都有|f(x1)-f(x2)|≤a2恒成立,

∴只需a2≥|f(x)最大值f(x)最小值|=-(-)=即可,

aa.

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为Cx万元,当年产量不足80千件时,Cxx2+10x万元;当年产量不少于80千件时,Cx=51x+-1 450万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部销售完

1写出年利润L万元关于年产量x千件的函数解析式;

2年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届吉林省普通中学高三第二次调研】某校冬令营有三名男同学A,B,C和三名女同学X,Y,Z

1)从6人中抽取2人参加知识竞赛,求抽取的2人都是男生的概率;

2)若从这3名男生和3名女生中各任选一名,求这2人中包含A且不包含X的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C,其中e为椭圆离心率),焦距为2,过点M40)的直线l与椭圆C交于点AB,点BAM之间.又点AB的中点横坐标为

)求椭圆C的标准方程;

)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】pf(x)在区间(1,+∞)上是减函数;q:若x1x2是方程x2ax20的两个实根,则不等式m25m3≥|x1x2|对任意实数a[1,1]恒成立.若p不正确,q正确,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:

男生测试情况:

抽样情况

病残免试

不合格

合格

良好

优秀

人数

5

10

15

47

女生测试情况

抽样情况

病残免试

不合格

合格

良好

优秀

人数

2

3

10

2

1)现从抽取的1000名且测试等级为优秀的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;

2)若测试等级为良好优秀的学生为体育达人其它等级的学生(含病残免试非体育达人根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为是否为体育达人与性别有关?

男性

女性

总计

体育达人

非体育达人

总计

临界值表:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

:( 其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的方程为,定点,点是曲线上的动点, 的中点.

(1)求点的轨迹的直角坐标方程;

(2)已知直线轴的交点为,与曲线的交点为,若的中点为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,二面角的大小为90°

1)求证:

2)试确定的值,使得直线与平面所成的角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为( )

A. 3 B. C. D. 2

查看答案和解析>>

同步练习册答案