精英家教网 > 高中数学 > 题目详情

【题目】某种商品价格与该商品日需求量之间的几组对照数据如下表:

(1)求关于的线性回归方程;

(2)利用(1)中的回归方程,当价格时,日需求量的预测值为多少?

参考公式:线性归回方程: ,其中

【答案】(1)所求线性回归方程为

(2)价格元/ kg时,日需求量的预测值为kg

【解析】试题分析】(1)依据题设运用平均数公式分别算出,

,然后再算出, 及 .进而求出. 代入回归方程求出. 最终求出线性回归方程为.(2)依据(1)的结论直接将代入回归方程求得, ,即当价格元/ kg时,日需求量的预测值为kg.

解: (1)由所给数据计算得

,

,

,

.

.

.

所求线性回归方程为.

(2)由(1)知当时,

故当价格元/ kg时,日需求量的预测值为kg.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

I)若,求函数的单调区间;(其中是自然对数的底数)

II)设函数,当时,曲线有两个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log (x2﹣ax+b). (Ⅰ)若函数f(x)的定义域为(﹣∞,2)∪(3,+∞),求实数a,b的值;
(Ⅱ)若f(﹣2)=﹣3且f(x)在(﹣∞,﹣1]上为增函数,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)若过点恰有两条直线与曲线相切,求的值;

)用表示中的最小值,设函数,若恰有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形ABCD中, ,点分别在边上,且 于点.现将沿折起,使得平面平面,得到图2.

(Ⅰ)在图2中,求证:

(Ⅱ)若点是线段上的一动点,问点什么位置时,二面角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2+2ax﹣a﹣1,x∈[0,2],a为常数.
(1)求f(x)的最小值g(a)的解析式;
(2)在(1)中,是否存在最小的整数m,使得g(a)﹣m≤0对于任意a∈R均成立,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数,两个函数相同的是(
A.f(x)= ,g(x)=x
B.f(x)=log33x , g(x)=
C.f(x)=( 2 , g(x)=|x|
D.f(x)=x,g(x)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某畜牧站为了考查某种新型药物预防动物疾病的效果,利用小白鼠进行试验,得到如下丢失数据的列联表

患病

未患病

总计

没服用药

20

30

50

服用药

50

总计

100

设从没服用药的小白鼠中任取两只,未患病的动物数为,从服用药物的小白鼠中任取两只,未患病的动物数为,得到如下比例关系:

(1)求出列联表中数据的值

(2)是否有的把握认为药物有效?并说明理由

(参考公式:,当时,有的把握认为A与B有关;时,有的把握认为A与B有关.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每年每次租时间不超过两小时免费,超过两个小时的部分每小时收费2元(不足1小时的部分按1小时计算).现有甲、乙两人独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为 ;两小时以上且不超过三小时还车的概率为 ;两人租车时间都不会超过四小时.

(1)求甲、乙都在三到四小时内还车的概率和甲、乙两人所付租车费相同的概率;

(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望.

查看答案和解析>>

同步练习册答案