精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知一个椭圆的中心在原点,左焦点为F(-
3
,0)
,且过D(2,0).
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,点A(1,0),求线段PA中点M的轨迹方程.
(1)由已知得椭圆的半长轴a=2,半焦距c=
3
,则半短轴b=
a2-c2
=1.
又椭圆的焦点在x轴上,
∴椭圆的标准方程为
x2
4
+y2=1

(2)设线段PA的中点为M(x,y),点P的坐标是(x0,y0),
x=
x0+1
2
y=
y0
2
,得
x0=2x-1
y0=2y

∵点P在椭圆上,得
(2x-1)2
4
+(2y)2=1

∴线段PA中点M的轨迹方程是(x-
1
2
)2+4y2=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
2
+
y2
b2
=1
的焦点为F1,F2,两条准线与x轴的交点分别为M,N,若|MN|≤2|F1F2|,则该椭圆离心率取得最小值时的椭圆方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2是椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,P为直线x=-
3
2
a
上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为(  )
A.
1
2
B.
2
3
C.
3
4
D.
4
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆
x2
2
+
y2
m
=1
的离心率为
1
2
,则实数m等于(  )
A.
3
2
B.
3
8
C.
3
2
8
3
D.
3
8
2
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,F1、F2是椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的两焦点,过点F2作AB⊥x轴交椭圆于A、B两点,若△F1AB为等腰直角三角形,且∠AF1B=90°,则椭圆的离心率是(  )
A.
2
-1
B.
2
2
C.3-2
2
D.2-
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆
x2
6
+
y2
2
=1和双曲线
x2
2
-
y2
2
=1的公共焦点为F1,F2,P是两曲线的一个交点,则∠F1PF2=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设点P是椭圆
x2
49
+
y2
24
=1
上一动点,F1,F2是椭圆的两个焦点,若|PF1|=6,则|OP|长为(  )
A.5B.10C.8D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1、F2是椭圆
x2
9
+
y2
7
=1
的两个焦点,A为椭圆上一点,且∠F1AF2=60°,则△F1AF2的面积为(  )
A.
7
3
3
B.
7
2
C.
7
4
D.
7
5
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
4
+
y2
m
=1
的离心率e∈[
2
2
,1)
,则m的取值范围为______.

查看答案和解析>>

同步练习册答案