精英家教网 > 高中数学 > 题目详情
已知{an}是公差不为零的等差数列,a1=1,a1,a3,a9成等比数列.求:
(Ⅰ)数列{an}的通项公式;
(Ⅱ)数列{an2an}的前n项和Sn
分析:(I)设等差数列{an}的公差为d,根据a1,a3,a9成等比数列建立关于d的方程,解之即可得到d=1(舍去0),由此代入等差数列的通项公式,即可得到数列{an}的通项公式;
(II)由(I)可得an2an=n×2n,利用错位相减法结合等比数列求和公式,即可得到数列{an2an}的前n项和Sn的值.
解答:解:(I)设等差数列{an}的公差为d,由题意知d为非零常数
∵a1=1,a1、a3、a9成等比数列
∴a32=a1×a9,即(1+2d)2=1×(1+8d),解之得d=1(舍去0)
因此,数列{an}的通项公式为an=1+(n-1)×1=n;
(II)由(I)得an2an=n×2n
∴Sn=1×21+2×22+3×23+…+(n-1)×2n-1+n×2n…①
两边都乘以2,得2Sn=1×22+2×23+3×24+…+(n-1)×2n+n×2n+1…②
①-②可得:-Sn=2+22+23+…+2n-n×2n+1=
2(1-2n)
1-2
-n×2n+1=2n+1(1-n)-2
∴Sn=(n-1)2n+1+2.
点评:本题给出等差数列{an}的第1、3、9项成等比数列,求它的通项公式并求数列{an2an}的前n项和.着重考查了等差数列的通项公式、错位相减法求和和等比数列求和公式等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项;
(Ⅱ)求数列{2an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差不为零的等差数列,{bn}等比数列,满足b1=a12,b2=a22,b3=a32
(I)求数列{bn}公比q的值;
(II)若a2=-1且a1<a2,求数列{an}公差的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项;
(Ⅱ)令bn=
1
(an+1)2-1
(n∈N*)
,数列{bn}的前n项和Tn,证明:Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(1)求数列{an}的通项公式;
(2)求数列{
1anan+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=b1=1,a4=7,a5=b2,且存在常数α,β使得对每一个正整数n都有an=logαbn+β,则α+β=
4
4

查看答案和解析>>

同步练习册答案