精英家教网 > 高中数学 > 题目详情
已知圆C经过点A(1,3),B(5,1),且圆心C在直线x-y+1=0上.
(1)求圆C的方程;
(2)设直线l经过点(0,3),且l与圆C相切,求直线l的方程.
分析:(1)根据圆心在直线x-y+1=0上,设出圆心坐标,设出圆的半径,得到圆的标准方程,然后把点A,B的坐标代入圆的方程,求解方程组即可得到待求系数,则方程可求;
(2)分斜率存在和不存在写出切线方程,当斜率不存在时,验证知符合题意,当斜率存在时,利用圆心到直线的距离等于半径可求k的值,所以圆的切线方程可求.
解答:解:(1)因为圆心C在直线x-y+1=0上,所以设圆C的圆心C(a,a+1),半径为r(r>0),
所以圆的方程为(x-a)2+(y-a-1)2=r2
因为圆C经过点A(1,3),B(5,1),
所以,
(1-a)2+(3-a-1)2=r2
(5-a)2+(1-a-1)2=r2
,即
2a2-6a+5=r2
2a2-10a+25=r2

解得:
a=5
r=5

所以,圆C的方程为(x-5)2+(y-6)2=25;
(2)由题意设直线l的方程为y=kx+3,或x=0
当l的方程为x=0时,验证知l与圆C相切.
当l的方程为y=kx+3,即kx-y+3=0时,
圆心C到直线l的距离为d=
|5k-6+3|
k2+1
=5
,解得:k=-
8
15

所以,l的方程为y=-
8
15
x+3
,即8x+15y-45=0.
所以,直线l的方程为x=0,或8x+15y-45=0.
点评:本题考查用待定系数法求圆的方程,一般可通过已知条件,设出所求方程,再寻求方程组进行求解.
考查了过定点的圆的切线方程的求法,注意分类讨论,利用点到直线的距离等于半径比联立方程后让判别式等于0要简洁.此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C经过点A(1,3)、B(2,2),并且直线l:3x-2y=0平分圆C,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(1,2)、B(3,0),并且直线m:2x-3y=0平分圆C.
(1)求圆C的方程;
(2)过点D(0,3),且斜率为k的直线l与圆C有两个不同的交点E、F,若|EF|≥2
3
,求k的取值范围;
(3)若圆C关于点(
3
2
,1)
对称的曲线为圆Q,设M(x1,y1)、P(x2,y2)(x1≠±x2)是圆Q上的两个动点,点M关于原点的对称点为M1,点M关于x轴的对称点为M2,如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(1,3)、B(2,2),并且直线m:3x-2y=0平分圆C.
(1)求圆C的方程;
(2)若过点D(0,1),且斜率为k的直线l与圆C有两个不同的交点M、N.
(Ⅰ)求实数k的取值范围;
(Ⅱ)(文科不做)若
OM
ON
=12,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(1,4)、B(3,-2),圆心C到直线AB的距离为
10
,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(-1,0)和B(3,0),且圆心在直线x-y=0上.
(1)求圆C的方程;
(2)若点P(x,y)为圆C上任意一点,求点P到直线x+2y+4=0的距离的最大值和最小值.

查看答案和解析>>

同步练习册答案