精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)= 是(﹣∞,+∞)上的减函数,那么a的取值范围是

【答案】 ≤a<
【解析】解:∵当x≥1时,y=logax单调递减,
∴0<a<1;
而当x<1时,f(x)=(3a﹣1)x+4a单调递减,
∴a<
又函数在其定义域内单调递减,
故当x=1时,(3a﹣1)x+4a≥logax,得a≥
综上可知, ≤a<
所以答案是: ≤a<
【考点精析】解答此题的关键在于理解函数单调性的性质的相关知识,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集,以及对对数函数的单调性与特殊点的理解,了解过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 中, 分别为两腰上的高、求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log3(ax2+3x+4)
(1)若f(1)<2,求a的取值范围
(2)若a=1,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数存在两个零点.

1)求实数的取值范围;

2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828


(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中恰有2个人接受挑战的概率是多少?
(2)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下 列联表:

接受挑战

不接受挑战

合计

男性

50

10

60

女性

25

15

40

合计

75

25

100

根据表中数据,是否有99%的把握认为“冰桶挑战赛与受邀者的性别有关”?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范围;
(2)在(1)的范围内求y=g(x)﹣f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在(﹣1,+∞)内的增函数,且f(xy)=f(x)+f(y)若f(3)=1且f(a)>f(a﹣1)+2
求:
(1)f(9)的值,
(2)求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面,且 的中点.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=loga(2﹣ax)是[0,1]上的减函数,则a的取值范围为 (   )

A. (0,1) B. (1,2) C. (0,2) D. (2,+∞)

查看答案和解析>>

同步练习册答案