精英家教网 > 高中数学 > 题目详情
3.过点P(2,1)的直线l与函数f(x)=$\frac{2x+3}{2x-4}$的图象交于A,B两点,O为坐标原点,则$\overrightarrow{OA}•\overrightarrow{OP}+\overrightarrow{OB}•\overrightarrow{OP}$=(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.5D.10

分析 f(x)=$\frac{2x+3}{2x-4}$=1+$\frac{\frac{7}{2}}{x-2}$,可得函数f(x)=$\frac{2x+3}{2x-4}$的图象关于点P(2,1)对称,过点P(2,1)的直线l与函数f(x)=$\frac{2x+3}{2x-4}$的图象交于A,B两点,A,B两点关于点P(2,1)对称⇒$\overrightarrow{OA}•\overrightarrow{OP}+\overrightarrow{OB}•\overrightarrow{OP}$=$\overrightarrow{OP}•(\overrightarrow{OA}+\overrightarrow{OB})=2{\overrightarrow{OP}}^{2}$即可.

解答 解:f(x)=$\frac{2x+3}{2x-4}$=1+$\frac{\frac{7}{2}}{x-2}$,
∴函数f(x)=$\frac{2x+3}{2x-4}$的图象关于点P(2,1)对称,
∴过点P(2,1)的直线l与函数f(x)=$\frac{2x+3}{2x-4}$的图象交于A,B两点,
A,B两点关于点P(2,1)对称,∴$\overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OP}$,
则$\overrightarrow{OA}•\overrightarrow{OP}+\overrightarrow{OB}•\overrightarrow{OP}$=$\overrightarrow{OP}•(\overrightarrow{OA}+\overrightarrow{OB})=2{\overrightarrow{OP}}^{2}$,|$\overrightarrow{OP}$|=$\sqrt{{2}^{2}+1}=\sqrt{5}$,
∴则$\overrightarrow{OA}•\overrightarrow{OP}+\overrightarrow{OB}•\overrightarrow{OP}$=2×5=10.
故选:D.

点评 本题考查了函数的对称性及向量的运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知F1,F2分别是双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a,b>0)$的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆内,则双曲线离心率的取值范围是(  )
A.(1,2)B.(2,+∞)C.$(1,\;\sqrt{2})$D.$(\sqrt{2},\;+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数学课外活动中,小明同学进行了糖块溶于水的实验:将一块质量为7克的糖块放入一定量的水中,测量不同时刻未溶解糖块的质量,得到若干组数据,其中在第5分钟末测得未溶解糖块的质量为3.5克.联想到教科书中研究“物体冷却”的问题,小明发现可以用指数型函数S=ae-kt(a,k是常数)来描述以上糖块的溶解过程,其中S(单位:克)代表t分钟末未溶解糖块的质量.
(1)a=7;
(2)求k的值;
(3)设这个实验中t分钟末已溶解的糖块的质量为M,请画出M随t变化的函数关系的草图,并简要描述实验中糖块的溶解过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆O:x2+y2=16及圆内一点F(-3,0),过F任作一条弦AB.
(1)求△AOB面积的最大值及取得最大值时直线AB的方程;
(2)若点M在x轴上,且使得MF为△AMB的一条内角平方线,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x∈Z|x≥2},B={x|(x-1)(x-3)<0},则A∩B=(  )
A.B.{2}C.{2,3}D.{x|2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}中,an+2-2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求证:{an+1-an}是等差数列;
(2)求数列{$\frac{1}{{a}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某校共有在职教师200人,其中高级教师20人,中级教师100人,初级教师80人,现采用分层抽样抽取容量为50的样本进行职称改革调研,则抽取的初级教师的人数为(  )
A.25B.20C.12D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a=$\sqrt{0.4}$,b=20.4,c=0.40.2,则a,b,c三者的大小关系是(  )
A.b>c>aB.b>a>cC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow{b}$=(4,2).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\overrightarrow{a}$的坐标;
(2)若$\overrightarrow{a}$-$\overrightarrow{b}$与5$\overrightarrow{a}$+2$\overrightarrow{b}$垂直,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ的大小.

查看答案和解析>>

同步练习册答案