精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线t为参数),曲线,(为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.

1)求曲线的极坐标方程;

2)射线分别交AB两点,求的最大值.

【答案】1;(2.

【解析】

1)对于曲线入消元,消去.对于曲线利用,消去.再利用,即可化为极坐标方程.

2)联立射线的极坐标方程为与曲线的极坐标方程,即可用角表示出,化简后根据即可求出的最大值.

1)消去参数t,得曲线的直角坐标方程为

则曲线的极坐标方程为.

消去参数,得曲线的直角坐标方程为,即

所以曲线的极坐标方程为,即

2)射线的极坐标方程为

联立,得

所以

,得,则

因此

,得.

所以,当,即时,.

的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥中,在底面上的投影为的中点.有下列结论:

①三棱锥的三条侧棱长均相等;

的取值范围是

③若三棱锥的四个顶点都在球的表面上,则球的体积为

④若是线段上一动点,则的最小值为.

其中所有正确结论的编号是(

A.①②B.②③C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形中,E的中点.现将沿翻折,使点A移动至平面外的点P.

1)若,求证:平面

2)若平面平面,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(x+)(A>0>00<<)的部分图象如图所示,又函数g(x)=f(x+).

1)求函数g(x)的单调增区间;

2)设ABC的内角ABC的对边分别为abc,又c=,且锐角C满足g(C)= -1,若sinB=2sinA,,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且曲线处的切线斜率为1

1)求实数的值;

2)证明:当时,

3)若数列满足,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若上不单调,求a的取值范围;

2)当时,记的两个零点是

①求a的取值范围;

②证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了治疗某种疾病,某科研机构研制了甲、乙两种新药,为此进行白鼠试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药一轮的治疗结果得出后,再安排下一轮试验.4轮试验后,就停止试验.甲、乙两种药的治愈率分别是.

1)若,求2轮试验后乙药治愈的白鼠比甲药治愈的白鼠多1只的概率;

2)已知A公司打算投资甲、乙这两种新药的试验耗材费用,甲药和乙药一次试验耗材花费分别为3千元和千元,每轮试验若甲、乙两种药都治愈或都没有治愈,则该科研机构和A公司各承担该轮试验耗材总费用的50%;若甲药治愈,乙药未治愈,则A公司承担该轮试验耗材总费用的75%,其余由科研机构承担,若甲药未治愈,乙药治愈,则A公司承担该轮试验耗材总费用的25%,其余由科研机构承担.A公司每轮支付试验耗材费用的期望为标准,求A公司4轮试验结束后支付试验耗材最少费用为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别为,离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为

(Ⅰ)求椭圆的方程;

(Ⅱ)点为椭圆上一动点,连接,设的角平分线交椭圆的长轴于点,求实数的取值范围.

查看答案和解析>>

同步练习册答案