【题目】在直角坐标系xOy中,曲线C的参数方程为 (θ为参数),直线l的参数方程为,(t为参数).
(1)若a=-1,求C与l的交点坐标;
(2)若C上的点到l距离的最大值为,求a.
【答案】(1)和;(2)或8
【解析】试题分析:(1)将曲线C与直线l的参数方程转化为普通方程,解方程组即可;(2)l的参数方程化为一般方程是:x+4y﹣a﹣4=0,在椭圆C上的任一点P可以表示成P(3cosθ,sinθ),利用点到直线距离公式,转化为三角函数最值问题.
试题解析:
(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;
a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;
联立方程, 解得或,
所以椭圆C和直线l的交点为(3,0)和(﹣,).
(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,
椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),
所以点P到直线l的距离d为:
d==,φ满足tanφ=,
又d的最大值dmax=,
所以|5sin(θ+φ)﹣a﹣4|的最大值为17,
得:5﹣a﹣4=17或﹣5﹣a﹣4=﹣17,
即a=﹣16或a=8.
科目:高中数学 来源: 题型:
【题目】设, 分别为双曲线的左、右焦点, 为双曲线的左顶点,以, 为直径的圆交双曲线某条渐近线于, 两点,且满足,则该双曲线的离心率为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.
(1)求证:BD∥平面FGH;
(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45° ,求平面FGH与平面ACFD所成的角(锐角)的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=g(x)=f(x)+x-6lnx,其中R.
(1)当=1时,判断f(x)的单调性;
(2)当=2时,求出g(x)在(0,1)上的最大值;
(3)设函数当=2时,若总有成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是( )
A. 月接待游客量逐月增加
B. 年接待游客量逐年增加
C. 各年的月接待游客量高峰期大致在7,8月
D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①,,②,,③,三个条件中任选一个补充在下面问题中,并加以解答.
已知的内角A,B,C的对边分别为a,b,c,若,______,求的面积S.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com