ÒÑÖªF1£¬F2ΪÍÖÔ²C£º
x2
a2
+
y2
b2
=1
£¬£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã£¬OÊÇ×ø±êÔ­µã£¬¹ýF2×÷´¹Ö±ÓÚxÖáµÄÖ±ÏßMF2½»ÍÖÔ²ÓÚM£¬Éè|MF2|=d£®
£¨1£©Ö¤Ã÷£ºd£¬b£¬a³ÉµÈ±ÈÊýÁУ»
£¨2£©ÈôMµÄ×ø±êΪ(
2
£¬1)
£¬ÇóÍÖÔ²CµÄ·½³Ì£»
[ÎÄ¿Æ]ÔÚ£¨2£©µÄÍÖÔ²ÖУ¬¹ýF1µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬Èô
OA
OB
=0£¬ÇóÖ±ÏßlµÄ·½³Ì£®
[Àí¿Æ]ÔÚ£¨2£©µÄÍÖÔ²ÖУ¬¹ýF1µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬ÈôÍÖÔ²CÉÏ´æÔÚµãP£¬Ê¹µÃ
OP
=
OA
+
OB
£¬ÇóÖ±ÏßlµÄ·½³Ì£®
·ÖÎö£º£¨1£©ÉèMµãµÄ×ø±êΪ£¨c£¬y0£©£¬Ôò|y0|=d£¬´úÈëÍÖÔ²·½³Ì£¬ÕûÀí¿ÉµÃ
d
b
=
b
a
£¬½ø¶ø¸ù¾ÝµÈ±ÈÊýÁеĶ¨ÒåµÃµ½½áÂÛ£»
£¨2£©MµÄ×ø±êΪ(
2
£¬1)
£¬Ôòc=
2
£¬d=1
£¬½ø¶øÇó³öa£¬bµÄÖµ£¬¿ÉµÃÍÖÔ²CµÄ·½³Ì£»
[ÎÄ¿Æ]ÉèµãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬ÓÉ
OA
OB
=0£¬ÁªÁ¢·½³Ì£¬ÓÉΤ´ï¶¨ÀíºÍÏòÁ¿´¹Ö±µÄ³äÒªÌõ¼þ¹¹Ôì¹ØÓÚÖ±ÏßбÂʵķ½³Ì£¬½â·½³ÌÇó³öÖ±ÏßбÂÊ£¬¿ÉµÃÖ±ÏßlµÄ·½³Ì£®
[Àí¿Æ]ÉèµãP£¨x£¬y£©£¬A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬½ø¶ø¸ù¾Ý
OP
=
OA
+
OB
£¬ÓÉΤ´ï¶¨ÀíºÍÏòÁ¿¼Ó·¨×ø±êÔËË㹫ʽ£¬¹¹Ôì¹ØÓÚÖ±ÏßбÂʵķ½³Ì£¬½â·½³ÌÇó³öÖ±ÏßбÂÊ£¬¿ÉµÃÖ±ÏßlµÄ·½³Ì£®
½â´ð£ºÖ¤Ã÷£º£¨1£©ÓÉÌõ¼þÖªMµãµÄ×ø±êΪ£¨c£¬y0£©£¬ÆäÖÐ|y0|=d£¬
¡à
c2
a2
+
d2
b2
=1£¬d=b?
1-
c2
a2
=
b2
a
£¬£¨3·Ö£©
¡à
d
b
=
b
a
£¬
¼´d£¬b£¬a³ÉµÈ±ÈÊýÁУ®£¨4·Ö£©
½â£º£¨2£©ÓÉÌõ¼þÖªc=
2
£¬d=1
£¬
¡à
b2=a?1
a2=b2+2
(6·Ö)

¡à½âµÃa=2£¬b=
2
£®£¬
¡àÍÖÔ²·½³ÌΪ
x2
4
+
y2
2
=1
£¨8·Ö£©
[ÎÄ¿Æ]ÉèµãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬
µ±l¡ÍxÖáʱ£¬A£¨-
2
£¬-1£©¡¢B£¨-
2
£¬1£©£¬
ËùÒÔ
OA
OB
¡Ù0£®£¨9·Ö£©
ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+
2
£©£¬
´úÈëÍÖÔ²·½³ÌµÃ
x2
4
+
k2(x+
2
)2
2
=1
£®£¨11·Ö£©
¼´£¨1+2k2£©x2-4
2
k2
x+4k2-4=0
ËùÒÔx1+x2=
4
2
k2
1+2k2
£¬x1?x2=
4k2-4
1+2k2
£®£¨13·Ö£©
ÓÉ
OA
OB
=0
µÃx1?x2+y1?y2=0
x1?x2+k2(x1+
2
)(x2+
2
)=(1+k2)x1?x2+
2
k2(x1+x2)+2k2=0

´úÈëµÃ
(1+k2)(4k2-4)
1+2k2
-
4
2
k2?
2
k2
1+2k2
+2k2=0
£¬½âµÃk=¡À
2
£®
ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=¡À
2
(x+
2
)
£®£¨16·Ö£©
[Àí¿Æ]ÉèµãP£¨x£¬y£©£¬A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬
ÓÉ
OP
=
OA
+
OB
£¬µÃ
x=x1+x2
y=y1+y2

µ±l¡ÍxÖáʱ£¬A£¨-
2
£¬-1£©¡¢B£¨-
2
£¬1£©£¬
´ËʱP£¨-2
2
£¬0£©²»ÔÚÍÖÔ²ÉÏ£®£¨9·Ö£©
ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+
2
£©£¬
´úÈëÍÖÔ²·½³ÌµÃ£¨1+2k2£©x2-4
2
k2
x+4k2-4=0£®£¨11·Ö£©
ËùÒÔx1+x2=
4
2
k2
1+2k2
£¬x1?x2=
4k2-4
1+2k2
£®£¨13·Ö£©
°ÑµãP£¨x£¬y£©´úÈëÍÖÔ²·½³ÌµÃ
32k4
4(1+2k2)2
+
8k2
2(1+2k2)2
=1
£¬½âµÃk2=
1
2
£¬
ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=¡À
2
2
(x+
2
)
£®£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊÇÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣬ÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬ÊǸ߿¼µÄѹÖáÌâÐÍ£¬×ÛºÏÄÜÁ¦Ç¿£¬ÔËËãÁ¿´ó£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªF1£¬F2ΪÍÖÔ²
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄÁ½¸ö½¹µã£¬¹ýF2×÷ÍÖÔ²µÄÏÒAB£¬Èô¡÷AF1BµÄÖܳ¤Îª16£¬ÍÖÔ²µÄÀëÐÄÂÊe=
3
2
£¬ÔòÍÖÔ²µÄ·½³ÌΪ£¨¡¡¡¡£©
A¡¢
x2
4
+
y2
3
=1
B¡¢
x2
16
+
y2
3
=1
C¡¢
x2
16
+
y2
4
=1
D¡¢
x2
16
+
y2
12
=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªF1£¬F2ΪÍÖÔ²EµÄÁ½¸ö×óÓÒ½¹µã£¬Å×ÎïÏßCÒÔF1Ϊ¶¥µã£¬F2Ϊ½¹µã£¬ÉèPΪÍÖÔ²ÓëÅ×ÎïÏßµÄÒ»¸ö½»µã£¬Èç¹ûÍÖÔ²ÀëÐÄÂÊeÂú×ã|PF1|=e|PF2|£¬ÔòeµÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªF1¡¢F2ΪÍÖÔ²
x2
25
+
y2
9
=1
µÄÁ½¸ö½¹µã£¬µãPÊÇÍÖÔ²ÉϵÄÒ»¸ö¶¯µã£¬Ôò|PF1|•|PF2|µÄ×îСֵÊÇ
9
9
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªF1¡¢F2ΪÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ½¹µã£¬BΪÍÖÔ²¶ÌÖáµÄÒ»¸ö¶Ëµã£¬
BF1
BF2
¡Ý
1
2
F1F2
2
ÔòÍÖÔ²µÄÀëÐÄÂʵÄÈ¡Öµ·¶Î§ÊÇ
£¨0£¬
1
2
]
£¨0£¬
1
2
]
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•¾£ÖÝÄ£Ä⣩ÒÑÖªF1¡¢F2ΪÍÖÔ²C£º
x2
m+1
+
y2
m
=1µÄÁ½¸ö½¹µã£¬PΪÍÖÔ²ÉϵĶ¯µã£¬Ôò¡÷F1PF2Ãæ»ýµÄ×î´óֵΪ2£¬ÔòÍÖÔ²µÄÀëÐÄÂÊeΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸