精英家教网 > 高中数学 > 题目详情
若抛物线的焦点在圆上,则            

试题分析:因为抛物线的焦点在圆上,令y=0,可知,因此可知焦点的横坐标为1,那么p=2,故答案为2.
点评:解决该试题的关键是运用抛物线方程表示其焦点坐标,通过圆的一般式,得到其与x轴的交点的坐标,进而得到p的值。属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

抛物线y=4x2的准线方程是                                     (    )
A.x=1B.C.y=-1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆的中点在原点O,焦点在x轴上,点是其左顶点,点C在椭圆上且·="0," ||=||.(点C在x轴上方)
(I)求椭圆的方程;
(II)若平行于CO的直线和椭圆交于M,N两个不同点,求面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点到双曲线的渐近线的距离为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求点在上, 点在上,且对角线过点,已知米,米.
(1)要使矩形的面积大于32平方米,则的长应在什么范围内?
(2)当的长度为多少时,矩形花坛的面积最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设双曲线的方程为为其左、右两个顶点,是双曲线 上的任意一点,作,垂足分别为交于点.
(1)求点的轨迹方程;
(2)设的离心率分别为,当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,抛物线的顶点为坐标原点,焦点轴上,准线与圆相切.

(Ⅰ)求抛物线的方程;
(Ⅱ)若点在抛物线上,且,求点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)抛物线与直线相交于两点,且
(1)求的值。
(2)在抛物线上是否存在点,使得的重心恰为抛物线的焦点,若存在,求点的坐标,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知椭圆的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,点P(0,1),且|PA|=|PB|,求直线的方程。

查看答案和解析>>

同步练习册答案