精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,底面ABCD为直角梯形,,侧面底面ABCD

PB的中点为E,求证:平面PCD

,求二面角的余弦值.

【答案】证明见解析;

【解析】

PC的中点F,连接EFDF,推导出四边形ADFE是平行四边形,,由此能证明平面PCD

A为原点,ABx轴,ADy轴,APz轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.

证明:如图,取PC的中点F,连接EFDF

F分别为PBPC的中点,

,且,且

四边形ADFE是平行四边形,

平面PCD平面PCD

平面PCD

平面平面,平面平面平面

平面

,则两两垂直,

A为原点,ABx轴,ADy轴,APz轴,建立空间直角坐标系,

设平面BDP的法向量

,取,得

设平面PCD的法向量

,取,得

设二面角的平面角为,则

二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中

(Ⅰ)当为偶函数时,求函数的极值;

(Ⅱ)若函数在区间上有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数e为自然对数的底数).

1)若,求的最大值;

2)若R上单调递减,

①求a的取值范围;

②当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|ax-2|,不等式f(x)≤4的解集为{x|-2≤x≤6}.

(1)求实数a的值;

(2)设g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面为直角梯形,°,底面,且的中点.

(1)证明平面平面

(2)求所成角的余弦值;

(3)求平面与平面所成二面角(锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】首项为O的无穷数列同时满足下面两个条件:

;②

(1)请直接写出的所有可能值;

(2)记,若对任意成立,求的通项公式;

(3)对于给定的正整数,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,倾斜角为的直线的参数方程为为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,且,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三棱柱的底面边长是2,侧棱长是4的中点.中点,中点,中点,

1)计算异面直线所成角的余弦值

2)求证:平面

3)求证:面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某二手车直卖网站对其所经营的一款品牌汽车的使用年数x与销售价格y(单位:万元,辆)进行了记录整理,得到如下数据:

(I)画散点图可以看出,zx有很强的线性相关关系,请求出zx的线性回归方程(回归系数精确到0.01);

(II)y关于x的回归方程,并预测某辆该款汽车当使用年数为10年时售价约为多少.

参考公式:

参考数据:

查看答案和解析>>

同步练习册答案