精英家教网 > 高中数学 > 题目详情
已知双曲线)的焦距为,右顶点为,抛物线的焦点为,若双曲线截抛物线的准线所得线段长为,且,则双曲线的渐近线方程为___________.
由已知,所以,代入双曲线方程得,所以,直线被双曲线截得的线段长为,从而,所以,,所求渐近线方程为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.
(1)求抛物线C的方程;
(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=-8x的焦点坐标是(  )
A.(0,-2)B.(-2,0)C.(0,2)D.(2,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,一隧道内设双行线公路,其截面由一个长方形和抛物线构成,为保安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m.若行驶车道总宽度AB为6m,计算车辆通过隧道的限制高度是多少米?(精确到0.1m)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知椭圆,双曲线(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为(     )
A.5B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点 的距离为2。
(1)求椭圆的方程;
(2)是否存在斜率 的直线使直线与椭圆相交于不同的两点M,N满足,若存在,求直线l的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别为和椭圆上的点,则两点间的最大距离是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线+=1的离心率,则的值为      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是双曲线的左,右焦点,若双曲线左支上存在一点与点关于直线对称,则该双曲线的离心率为
A.B.C.D.

查看答案和解析>>

同步练习册答案