精英家教网 > 高中数学 > 题目详情
3.已知数列{an}是公差为1,各项均为正数的等差数列,若1,a1,a3成等比数列,则过点P(2,a6)和Q(a5,8)的直线的斜率是(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$-\frac{1}{4}$D.$\frac{1}{3}$

分析 根据等差数列和等比数列,分别求出a5,a6,从而求出直线的斜率即可.

解答 解:∵数列{an}是公差为1,各项均为正数的等差数列,
∴a3=a1+2,a5=a1+4,a6=a1+5,
若1,a1,a3成等比数列,
则${{a}_{1}}^{2}$=a3=a1+2,解得:a1=2,
∴a5=6,a6=7,
∴点P(2,a6)=(2,7),Q(a5,8)=(6,8),
∴KPQ=$\frac{8-7}{6-2}$=$\frac{1}{4}$,
故选:B.

点评 本题考查了等差数列和等比数列,考查直线的斜率问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知△ABC顶点的直角坐标分别为A(3,4),B(0,0),C(c,0)
(1)若$\overrightarrow{AB}•\overrightarrow{AC}=0$,求c的值;
(2)若c=5,求cos∠A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“?x∈R,x2≠-1”的否定是(  )
A.?x∉R,x2=-1B.?x∈R,x2=-1C.?x∉R,x2=-1D.?x∈R,x2=-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设有一决策系统,其中每个成员作出的决策互不影响,且每个成员作正确决策的概率均为p(0<p<1).当占半数以上的成员作出正确决策时,系统作出正确决策.要使有5位成员的决策系统比有3位成员的决策系统更为可靠,p的取值范围是(  )
A.(${\frac{1}{3}$,1)B.(${\frac{1}{2}$,1)C.(-${\frac{2}{3}$,1)D.($\frac{2}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=ax2+2ax+1在[-2,3]上的最大值为6,则f(x)的最小值为-74或$\frac{2}{3}$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设向量$\overrightarrow a$=(m,1),$\overrightarrow b$=(1,3),且$\overrightarrow a$•($\overrightarrow a$-$\overrightarrow b$)=0,则m=-1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知F1、F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点,过F2作垂直于x轴的直线交双曲线于点P,且∠PF1F2=30°.求:
(1)双曲线的离心率;
(2)双曲线的渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.命题p:log2(6x+12)≥log2(x2+3x+2);命题q:4ax+a<${2^{{x^2}-2x-3}}$;
(Ⅰ)若p为真命题,求x的取值范围;
(Ⅱ)若p为真命题是q为真命题的充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,已知点P(1,-2),直线l:$\left\{\begin{array}{l}x=1+m\\ y=-2+m\end{array}$(m为参数),以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系;曲线C的极坐标方程为ρsin2θ=2cosθ;直线l与曲线C的交点为A,B.
(1)求直线l和曲线C的普通方程;
(2)求$\frac{1}{{|{PA}|}}$+$\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

同步练习册答案