精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax
+lnx-1,a∈R

(1)若曲线y=f(x)在P(1,y0)处的切线平行于直线y=-x+1,求函数y=f(x)的单调区间;
(2)若a>0,且对x∈(0,2e]时,f(x)>0恒成立,求实数a的取值范围.
分析:(1)根据曲线y=f(x)在P(1,y0)处的切线平行于直线y=-x+1,求出函数的字母系数,对函数求导,使得导函数大于0,在定义域中求出函数的单调区间.
(2)现出函数的最大值,对函数求导求出函数的单调区间,看出函数的最大值,根据在自变量的定义域内函数大于0恒成立,根据函数的思想求出a的值.
解答:解:(1)直线y=-x+1斜率kAB=1,函数y=f(x)的导数f′(x)=-
a
x2
+
1
x

f′(1)=-a+1=-1,即a=2
∴f(x)=
2
x
+lnx-1,f′(x)=-
2
x2
+
1
x
=
x-2
x2
∵f(x)的定义域为(0,+∞),f′(x)=-
2
x2
+
1
x
=
x-2
x2
由f′(x)>0得x>2,由f′(x)<0得0<x<2.
∴函数f(x)的单调增区间(2,+∞),单调减区间是(0,2)

(2)∵a>0,f(x)>0,对x∈(0,2e]恒成立,
a
x
+lnx-1>0对x∈(0,2e]恒成立

设a>x(1-lnx)=x-xlnx,x∈(0,2e],
g(x)=1-lnx-1=-lnx
当0<x<1时,g(x)>0,g(x)为增函数,
当1<x<2e,g(x)<0,g(x)为减函数,
∴当x=1时,函数在(0,2e]上取得最大值,
∴g(x)≤g(1)=1
∴a的取值范围是(1,+∞)
点评:本题考查函数的综合题目,解题的关键是根据函数的导函数的正负确定函数的单调区间,本题还要注意恒成立问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案