精英家教网 > 高中数学 > 题目详情
如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点EFEF,则下列结论中错误的是    (  ).
A.ACBE
B.EF∥平面ABCD
C.三棱锥A-BEF的体积为定值
D.异面直线AEBF所成的角为定值
D
AC⊥平面BB1D1D,又BE?平面BB1D1D.
ACBE,故A正确.
B1D1∥平面ABCD,又EF在直线D1B1上运动,
EF∥平面ABCD,故B正确.
C中由于点B到直线B1D1的距离不变,故△BEF的面积为定值,又点A到平面BEF的距离为,故VA-BEF为定值.
当点ED1处,点FD1B1的中点时,建立空间直角坐标系,如图所示,可得A(1,1,0),B(0,1,0),E(1,0,1),F

=(0,-1,1),
·.
又||=,||=
∴cos〈〉=.
∴此时异面直线AEBF成30°角.
②当点ED1B1的中点,点FB1处时,此时EF(0,1,1),
=(0,0,1),
·=1,||=
∴cos〈〉=,故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥PABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,ABADABCDAB=2AD=2CD=2,EPB的中点.
 
(1)求证:平面EAC⊥平面PBC
(2)若二面角PACE的余弦值为,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三棱柱ABC-A1B1C1中,AB=2,AA1,点DAC的中点,点E在线段AA1上.

(1)当AEEA1=1∶2时,求证DEBC1
(2)是否存在点E,使二面角D-BE-A等于60°,若存在求AE的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四边形为直角梯形,为等边三角形,且平面平面中点.

(1)求证:
(2)求平面与平面所成的锐二面角的余弦值;
(3)在内是否存在一点,使平面,如果存在,求的长;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面平面是等腰直角三角形,,四边形是直角梯形,,点分别为的中点.

(1)求证:平面
(2)求直线和平面所成角的正弦值;
(3)能否在上找到一点,使得平面?若能,请指出点的位置,并加以证明;若不能,请说明理由 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD,底面ABCD为蓌形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点。 
(Ⅰ)求证:AE⊥PD;
(Ⅱ)若直线PB与平面PAD所成角的正弦值为,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线的法向量为,则该直线的倾斜角为        .(用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等差数列的前n项和为,且,则过点的直线的一个方向向量的坐标可以是(    )
A.B.(2,4)C.D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平行四边形ABCD中,BD为一条对角线,若(-3,-5)则(     )
A.(-2,-4)B.(1,3) C.(3,5)D.(2,4)

查看答案和解析>>

同步练习册答案