精英家教网 > 高中数学 > 题目详情
12.命题“?x>0,不等式x-1≥lnx成立”的否定为(  )
A.?x0>0,不等式x0-1≥lnx0成立B.?x0>0,不等式x0-1<lnx0成立
C.?x≤0,不等式x-1≥lnx成立D.?x>0,不等式x-1<lnx成立

分析 根据全称命题的否定是特称命题即可得到结论.

解答 解:命题为全称命题,
则命题的否定是?x0>0,不等式x0-1<lnx0成立,
故选:B.

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD的中点,若$\overrightarrow{AC}•\overrightarrow{BE}=4$,则AB的长为(  )
A.1B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过点(2,$\frac{π}{6}$)且平行于极轴的直线的极坐标方程是p•sinθ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某市环保局举办“六•五”世界环境日宣传活动,进行现场抽奖.抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“环保会徽”或“绿色环保标志”图案.参加者每次从盒中抽取卡片两张,若抽到两张都是“绿色环保标志”卡即可获奖.已知从盒中抽两张都不是“绿色环保标志”卡的概率是$\frac{1}{3}$.现有甲、乙、丙、丁四人依次抽奖,抽后放回,另一人再抽,用ξ表示获奖的人数,那么E(ξ)+D(ξ)=(  )
A.$\frac{224}{225}$B.$\frac{104}{225}$C.$\frac{8}{15}$D.$\frac{112}{225}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线l经过点A(-2,0),B(-5,3),则l的斜率为(  )
A.2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知极坐标系的极点与直角坐标系的原点O重合,极轴与x轴的正半轴重合.曲线C1:ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$,曲线C2:$\left\{\begin{array}{l}{x=4+5cost}\\{y=5+5sint}\end{array}\right.$(t为参数).
(1)写出曲线C1的直角坐标方程和C2的普通方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知某鱼塘仅养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从鱼塘中捕出这两种鱼各1000条,给每条鱼做上不影响其存活的标记,然后放回鱼塘,待完全混合后,再每次从鱼塘中随机地捕出1000条,记录下其中有记号的鱼的数目,然后立即放回鱼塘中,这样的记录做了10次,并将记录获取的数据制作成如图所示的茎叶图
(I)根据茎叶图计算有记号的鲤鱼和鲫鱼的平均数;
(II)为了估计鱼塘中鱼的总重量,现按照(I)中的比例对100条鱼进行称重,所得称重鱼的重量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5],如图是按上述分组方法得到的频率分布直方图的一部分.

(1)若第二、三、四组鱼的条数成公差为7的等差数列,请将频率分布直方图补充完整;
(2)通过抽样统计,初步估计鱼塘里共有20000条鱼,使在(1)的条件下估计该鱼塘中鱼重量的众数及鱼的总重量.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=3sin(2x+$\frac{π}{4}$),x∈[0,π]的单调递减区间为[$\frac{π}{8}$,$\frac{5π}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若f(x)=-3ex+(m2-1)x在(-∞,0]上恒为增函数,则m的取值范围是(  )
A.(-∞,-2]∪[2,+∞)B.[2,+∞)C.(-∞,-2]D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

同步练习册答案