精英家教网 > 高中数学 > 题目详情

【题目】已知向量
(1)若 垂直,求k的值;
(2)若 平行,求k的值.

【答案】
(1)解:∵向量

=(k,0)﹣(﹣2,1)=(k+2,﹣1),

=(1,0)+(﹣6,3)=(﹣5,3),

垂直,

∴( )( )=﹣5(k+2)﹣3=0,

解得


(2)解:∵ 平行,

,解得


【解析】(1)利用平面向理坐标运算法则先分别求出 ,再利用 垂直,能求出k的值.(2)利用 平行,结合向量平行的性质,能求出k的值.
【考点精析】根据题目的已知条件,利用数量积判断两个平面向量的垂直关系的相关知识可以得到问题的答案,需要掌握若平面的法向量为,平面的法向量为,要证,只需证,即证;即:两平面垂直两平面的法向量垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设 ,g(x)=x3﹣x2﹣3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x1 , x2∈[0,2],使得g(x1)﹣g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的 ,都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.

(1)求证:AB⊥CD;
(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin(x+ )图象上的所有点纵坐标不变,横坐标变为原来的 倍,所得函数为f(x),则函数f(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角△ABC的三个内角A,B,C的对边分别为a,b,c,且 =(a,b+c),
(1)求角A;
(2)若a=3,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知梯形ABCD,AB∥CD,且AB=AD=2,CD=3.
(1)用向量 表示向量
(2)若AD⊥AB,求向量 夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱锥S﹣ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,SA=SC= ,M为AB的中点.
(I)证明:AC⊥SB;
(Ⅱ)求点B到平面SCM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为 (其中为参数).以坐标原点为极点, 轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线的极坐标方程为.

(1)把曲线的方程化为普通方程, 的方程化为直角坐标方程;

(2)若曲线 相交于两点, 的中点为,过点做曲线的垂线交曲线两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极大值点(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案