精英家教网 > 高中数学 > 题目详情

已知函数取得极小值

(Ⅰ)求ab的值;

(Ⅱ)设直线. 若直线l与曲线S同时满足下列两个条件:

(1)直线l与曲线S相切且至少有两个切点;

(2)对任意xR都有. 则称直线l为曲线S的“上夹线”.试证明:直线是曲线的“上夹线”.

解:(I)因为,所以      

   

解得,          

此时

,当,            

所以取极小值,所以符合题目条件;       

(II)由

时,,此时

,所以是直线与曲线的一个切点;    

时,,此时

,所以是直线与曲线的一个切点;      

所以直线l与曲线S相切且至少有两个切点;

对任意xR

所以               

因此直线是曲线的“上夹线”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年广东佛山质检文)已知函数取得极小值.

(Ⅰ)求ab的值;

(Ⅱ)设直线. 若直线l与曲线S同时满足下列两个条件:

(1)直线l与曲线S相切且至少有两个切点;

(2)对任意xR都有. 则称直线l为曲线S的“上夹线”.

试证明:直线是曲线的“上夹线”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

(理)已知函数取得极小值.

(Ⅰ)求a,b的值;

(Ⅱ)设直线. 若直线l与曲线S同时满足下列两个条件:

(1)直线l与曲线S相切且至少有两个切点;

(2)对任意xR都有. 则称直线l为曲线S的“上夹线”.

试证明:直线是曲线的“上夹线”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数取得极小值.

(Ⅰ)求a,b的值;

(Ⅱ)设直线. 若直线l与曲线S同时满足下列两个条件:

(1)直线l与曲线S相切且至少有两个切点;

(2)对任意xR都有. 则称直线l为曲线S的“上夹线”.

试证明:直线是曲线的“上夹线”.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线. 若直线l与曲线S同时满足下列两个条件:

①直线l与曲线S相切且至少有两个切点;

②对任意xR都有. 则称直线l为曲线S的“上夹线”.

(1) 类比“上夹线”的定义,给出“下夹线”的定义;

(2) 已知函数取得极小值,求ab的值;

(3) 证明:直线是(2)中曲线的“上夹线”。

查看答案和解析>>

同步练习册答案