精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x+1定义在R上.
(1)若f(x)可以表示为一个偶函数g(x)与一个奇函数h(x)之和,设h(x)=t,p(t)=g(2x)+2mh(x)+m2-m-1(m∈R),求出p(t)的解析式;
(2)若p(t)≥m2-m-1对于x∈[1,2]恒成立,求m的取值范围;
(3)若方程p(p(t))=0无实根,求m的取值范围.

解:(1)假设f(x)=g(x)+h(x)①,其中g(x)偶函数,h(x)为奇函数,
则有f(-x)=g(-x)+h(-x),即f(-x)=g(x)-h(x)②,
由①②解得
∵f(x)定义在R上,∴g(x),h(x)都定义在R上.

∴g(x)是偶函数,h(x)是奇函数,∵f(x)=2x+1

,则t∈R,
平方得,∴
∴p(t)=t2+2mt+m2-m+1.
(2)∵t=h(x)关于x∈[1,2]单调递增,∴
∴p(t)=t2+2mt+m2-m+1≥m2-m-1对于恒成立,
对于恒成立,
,则
,∴,故上单调递减,
,∴为m的取值范围.
(3)由(1)得p(p(t))=[p(t)]2+2mp(t)+m2-m+1,
若p(p(t))=0无实根,即[p(t)]2+2mp(t)+m2-m+1①无实根,
方程①的判别式△=4m2-4(m2-m+1)=4(m-1).
1°当方程①的判别式△<0,即m<1时,方程①无实根.
2°当方程①的判别式△≥0,即m≥1时,
方程①有两个实根
②,
只要方程②无实根,故其判别式
即得③,且④,
∵m≥1,③恒成立,由④解得m<2,∴③④同时成立得1≤m<2.
综上,m的取值范围为m<2.
分析:(1)利用f(x)=g(x)+h(x)和f(-x)=g(-x)+h(-x)求出g(x)和h(x)的表达式,再求出p(t)关于t的表达式即可.
(2)先有x∈[1,2]找出t的范围,在把所求问题转化为求p(t)在[]的最小值.让大于等于m2-m-1即可.
(3)转化为关于p(t)的一元二次方程,利用判别式的取值,再分别讨论即可.
点评:本题是在考查指数函数的基础上对函数的恒成立问题,函数奇偶性以及一元二次方程根的判断的综合考查,是一道综合性很强的难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案