【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽粒,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为2的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为________;该六面体内有一球,则该球体积的最大值为________.
【答案】
【解析】
求出一个正三角形的面积乘以6即为所求六面体的表面积;取该六面体的一半记为正四面体,取BC中点为D,连接SD,AD,作平面ABC,垂足O在AD上,当六面体内的球体积最大时球心为O且该球与SD相切,过球心作,则OE就是球半径,求出OE代入球体体积计算公式即可得解.
一个正三角形面积为,该六面体是由六个边长为2的正三角形构成的,所以面积为;
该六面体也可看成由两个全等的正四面体组合而成,正四面体的棱长为2,如图,在棱长为2的正四面体中,取BC中点为D,连接SD,AD,作平面ABC,垂足O在AD上,则,,,
当该六面体内有一球,且该球体积取最大值时,球心为O,且该球与SD相切,过球心作,则OE就是球半径,
因为,所以球半径,
所以该球体积的最大值为:.
故答案为:;
科目:高中数学 来源: 题型:
【题目】为了贯彻落实党中央对新冠肺炎疫情防控工作的部署和要求,坚决防范疫情向校园蔓延,切实保障广大师生身体健康和生命的安全,教育主管部门决定通过电视频道、网络平台等多种方式实施线上教育教学工作.为了了解学生和家长对网课授课方式的满意度,从经济不发达的A城市和经济发达的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如下:
若评分不低于80分,则认为该用户对此授课方式“认可”,否则认为该用户对此授课方式“不认可”.以该样本中A,B城市的用户对此授课方式“认可”的频率分别作为A,B城市用户对此授课方式“认可”的概率.现从A城市和B城市的所有用户中分别随机抽取2个用户,用表示这4个用户中对此授课方式“认可”的用户个数,则__________;用表示从A城市随机抽取2个用户中对此授课方式“认可”的用户个数,则的数学期望为_________ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列中前两项给定,若对于每个正整数,均存在正整数()使得,则称数列为“数列”.
(1)若数列为的等比数列,当时,试问:与是否相等,并说明数列是否为“数列”;
(2)讨论首项为、公差为的等差数列是否为“数列”,并说明理由;
(3)已知数列为“数列”,且 ,记,,其中正整数, 对于每个正整数,当正整数分别取1、2、、时的最大值记为、最小值记为. 设,当正整数满足时,比较与的大小,并求出的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1,点M、E分别是PA、PD的中点
(1)求证:CE//平面BMD
(2)点Q为线段BP中点,求直线PA与平面CEQ所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com