精英家教网 > 高中数学 > 题目详情

【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽粒,俗称粽子,古称角黍,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为2的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为________;该六面体内有一球,则该球体积的最大值为________

【答案】

【解析】

求出一个正三角形的面积乘以6即为所求六面体的表面积;取该六面体的一半记为正四面体,取BC中点为D,连接SDAD,作平面ABC,垂足OAD上,当六面体内的球体积最大时球心为O且该球与SD相切,过球心作,则OE就是球半径,求出OE代入球体体积计算公式即可得解.

一个正三角形面积为,该六面体是由六个边长为2的正三角形构成的,所以面积为

该六面体也可看成由两个全等的正四面体组合而成,正四面体的棱长为2,如图,在棱长为2的正四面体中,取BC中点为D,连接SDAD,作平面ABC,垂足OAD上,则

当该六面体内有一球,且该球体积取最大值时,球心为O,且该球与SD相切,过球心作,则OE就是球半径,

因为,所以球半径

所以该球体积的最大值为:.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两个函数

(Ⅰ)当时,求在区间上的最大值;

(Ⅱ)求证:对任意,不等式都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列项和为,且,若,则首项的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了贯彻落实党中央对新冠肺炎疫情防控工作的部署和要求,坚决防范疫情向校园蔓延,切实保障广大师生身体健康和生命的安全,教育主管部门决定通过电视频道、网络平台等多种方式实施线上教育教学工作.为了了解学生和家长对网课授课方式的满意度,从经济不发达的A城市和经济发达的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如下:

若评分不低于80分,则认为该用户对此授课方式“认可”,否则认为该用户对此授课方式“不认可”.以该样本中AB城市的用户对此授课方式“认可”的频率分别作为AB城市用户对此授课方式“认可”的概率.现从A城市和B城市的所有用户中分别随机抽取2个用户,用表示这4个用户中对此授课方式“认可”的用户个数,则__________;用表示从A城市随机抽取2个用户中对此授课方式“认可”的用户个数,则的数学期望为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形中点,沿直线翻折成,直线与平面所成角最大时,线段长是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列中前两项给定,若对于每个正整数,均存在正整数)使得,则称数列数列”.

1)若数列的等比数列,当时,试问:是否相等,并说明数列是否为数列

2)讨论首项为、公差为的等差数列是否为数列,并说明理由;

3)已知数列数列,且 ,记,其中正整数 对于每个正整数,当正整数分别取12的最大值记为、最小值记为. ,当正整数满足时,比较的大小,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:不等式恒成立;

2)证明:存在两个极值点,

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆上的两点,满足,其中分别为左右焦点.

1)求的最小值;

2)若,设直线的斜率为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,已知PA平面ABCD且四边形ABCD为直角梯形,ABC=∠BADPAAD=2,ABBC=1,点ME分别是PAPD的中点

(1)求证:CE//平面BMD

(2)Q为线段BP中点,求直线PA与平面CEQ所成角的余弦值.

查看答案和解析>>

同步练习册答案