精英家教网 > 高中数学 > 题目详情

【题目】下列命题

①命题“若,则”的逆命题是真命题;

②若,则上的投影是

③在的二项展开式中,有理项共有4项;

④已知一组正数的方差为,则数据的平均数为4

⑤复数的共轭复数是,则.

其中真命题的个数为(

A.0B.1C.2D.3

【答案】B

【解析】

①、写出原命题的逆命题,并利用特殊值判断①不正确;②、计算出上的投影,由此判断②不正确;③利用二项式展开式的通项公式求得有理项,由此判断③错误;④、利用方差的计算公式、平均数的计算公式,判断④正确;⑤化简并求得其共轭复数,由此求得,判断⑤不正确.

根据题意,依次分析命题:

①,命题“若,则”的逆命题为“若,则”,当时,命题不成立,则①不正确;

上的投影是,则②不正确;

的展开式通项为,当时,为有理项,则其有理项共3项,则③错误;

④根据题意,由方差的计算公式,而这组数据的方差为,则这组数据的平均数为2,即,则,那么数据的平均数为,则④正确;

⑤复数,则其共轭复数是,则,有,则⑤不正确;

1个命题正确;

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设定义在上的函数满足:对任意的,当时,都有.

1)若,求实数的取值范围;

2)若为周期函数,证明:是常值函数;

3)若

①记,求数列的通项公式;

②求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于AB两点.设点P(4,3),记PAPB的斜率分别为k1k2

(1)求椭圆C的方程;

(2)如果直线l的斜率等于-1,求出k1k2的值;

(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,椭圆)的短轴长等于圆半径的倍,的离心率为

1)求的方程;

2)若直线交于两点,且与圆相切,证明:为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为庆祝新中国成立70周年,某市工会组织部分事业单位职工举行“迎国庆,广播操比赛”活动.现有200名职工参与了此项活动,将这200人按照年龄(单位:岁)分组:第一组[1525),第二组[2535),第三组[3545),第四组[4555),第五组[5565],得到的频率分布直方图如图所示.记事件A为“从这200人中随机抽取一人,其年龄不低于35岁”,已知PA)=0.75.

1)求的值;

2)在第二组、第四组中用分层抽样的方法抽取6人,再从这6人中随机抽取2人作为活动的负责人,求这2人恰好都在第四组中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正数数列满足:,且对一切k≥2k的等差中项,的等比中项.

1)若,求的值;

2)求证:是等差数列的充要条件是为常数数列;

3)记,当n≥2(n)时,指出的大小关系并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,讨论的单调性;

2)若有两个不同零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的一个焦点与抛物线的焦点重合,且离心率为.

1)求椭圆的标准方程;

2)过焦点的直线与抛物线交于两点,与椭圆交于两点,满足,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数的和表示.100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是________.(按照从大到小的顺序排列)

查看答案和解析>>

同步练习册答案